
Personal Folder File (PFF) file format specification

Analysis of the PFF format

By Joachim Metz <joachim.metz@gmail.com>

Summary
PFF is short for Personal Folder File and is mainly used by Microsoft Outlook to store e-mails,
appointments, contacts, tasks, etc. This specification is based on the work by libpst [SMITH02]
started in 2002 and was complimented by reverse engineering of the file format in 2008 and 2009. In
2010 it was synced with Microsoft's official PST specification [MS-PST].

This document is intended as a working document for the PFF specification. Which should allow
existing Open Source forensic tooling to be able to process this file type.

page i

Document information
Author(s): Joachim Metz <joachim.metz@gmail.com>

Abstract: This document contains information about the Personal Folder File format.

Classification: Public

Keywords: PFF, Personal Folder File, OFF, Offline Folder File, PAB, Personal Address Book,
PST, Personal Storage Table, OST, Outlook Storage Table

License
Copyright (c) 2008-2013 Joachim Metz <joachim.metz@gmail.com>.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Version
Version Author Date Comments

0.0.1 J.B. Metz Jun 1, 2008 Initial version based on earlier notes.

0.0.2 J.B. Metz Jun 7, 2008 Added information about LZFu compression and arrays.

0.0.3 J.B. Metz Jul 7, 2008 Added information about allocation tables.

0.0.4 J.B. Metz Oct 18, 2008 Updated for initial release.

0.0.5 J.B. Metz Oct 19, 2008 Added reference about RTF compression.

0.0.6 J.B. Metz Oct 21, 2008 Addition about attachments of type embedded object.

0.0.7 J.B. Metz Oct 24, 2008 Addition about 0x85 0x85 index node type.

0.0.8 J.B. Metz Oct 28, 2008 Added information about descriptor list type.

0.0.9 J.B. Metz Nov 27, 2008 Added information about name-to-id map.

0.0.10 J.B. Metz Dec 6, 2008 Additional information about the header.

0.0.11 J.B. Metz Dec 7, 2008 Additional information about the header and item values types
(property types).

0.0.12 J.B. Metz Dec 8, 2008 Additional information about item types (property
names/identifiers) and the name-to-id map.

0.0.13 J.B. Metz Dec 9, 2008 Additional information about the file header and the item
types.

0.0.14 J.B. Metz Dec 10, 2008
Dec 11, 2008
Dec 12, 2008
Dec 13, 2008

Additional information about the item types.

0.0.15 J.B. Metz Jan 15, 2009 Additional information about the allocation full maps.

0.0.16 J.B. Metz Jan 18, 2009 Additional information about HTML e-mail body type.

0.0.17 J.B. Metz Jan 25, 2009 Additional information about name-to-id map.

page ii

Version Author Date Comments

0.0.18 J.B. Metz Jan 29, 2009 Moved MAPI definitions to separate document.

0.0.19 J.B. Metz Mar 21, 2009
Mar 22, 2009

Added information encountered by C. Byington of the libpst
project.
Renamed the local descriptor list into the local descriptors.
Added information about the build-in Public strings class in the
name-to-id map.

0.0.20 J.B. Metz Mar 25, 2009
Mar 26, 2009

Additional information and corrections.

0.0.21 J.B. Metz May 13, 2009
May 16, 2009

Update for recipient types based on patch by K. Mazur

0.0.22 J.B. Metz May 16, 2009
May 17, 2009

Update for attachment rendering position from finding by
K. Mazur. Changed local descriptors node level into node type.

0.0.23 J.B. Metz June 14, 2009
June 15, 2009
June 16, 2009
June 17, 2009

Update for non UTF-16 strings in name-to-id map.
Clean up of the PFF items, mainly provided for in the MAPI
documentation.
First table index offset of an Outlook 2007 SP2 ost file is out of
the ordinary.

0.0.24 J.B. Metz June 24, 2009
June 25, 2009
June 27, 2009

Added information about the b5 table header table entries level.
Added information about the local descriptors type (level of
indirection).

0.0.25 J.B. Metz June 27, 2009
June 28, 2009

Added information about 6c and 8c table.
Added information about sub folders item.

0.0.26 J.B. Metz July 10, 2009
July 17, 2009
July 19, 2009

Additional information and corrections.
Added information about sub messages item.
Added missing information about 64-bit array type

0.0.27 J.B. Metz September 1, 2009
September 11, 2009

Added information about none encrypted pst files with
encrypted data.

0.0.28 J.B. Metz September 17, 2009 Added information about the array (indirection) level.

0.0.29 J.B. Metz September 29, 2009 Added information about the bc table (indirection) level.

0.0.30 J.B. Metz January 3, 2010 Small changes

0.0.31 J.B. Metz January 27, 2010
January 28, 2010
January 29, 2010
January 30, 2010
March 4, 2010

Additional information based on [MS-PST].

0.0.32 J.B. Metz March 19, 2010 Corrected information about table offset index entries.

0.0.33 J.B. Metz April 3, 2010 Updated remarks.

0.0.34 J.B. Metz April 29, 2010 Added codepage 1200 scenario.

0.0.35 J.B. Metz June 2010 Email change

0.0.36 J.B. Metz July 2010 Changes to local descriptors

0.0.37 J.B. Metz August 2010 Changed table entry to record entry, and table entry definition
to column definition for clarity.

0.0.38 J.B. Metz January 2010 License version update

0.0.39 J.B. Metz July 2012 Email change

0.0.40 J.B. Metz August 2012 Updated references.

0.0.41 J.B. Metz February 2013 Small changes.

0.0.42 J.B. Metz February 2013 Changes for Outlook 2013 OST (64-bit 4k page) file with
thanks to S. Gurjar.

page iii

Version Author Date Comments

0.0.43 J.B. Metz July 2013 Additional information about 64-bit 4k page format.

page iv

Table of Contents
1. Overview...1

1.1. Test version...1
2. File header...1

2.1. The 32-bit header data..2
2.2. The 64-bit header data..4
2.3. Allocation table validation type...6
2.4. Descriptor index high water marks...6

2.4.1. Descriptor index high water mark type...6
2.5. Encryption type...7

3. Pages...7
3.1. The 32-bit page...7
3.2. The 64-bit page...7
3.3. The 64-bit 4k page..8
3.4. Page type...8

4. The allocation table...8
4.1. The 32-bit allocation table...9
4.2. The 64-bit allocation table...9
4.3. The 64-bit 4k page allocation table...10
4.4. Allocation table types..10

5. The index b-tree..11
5.1. The 32-bit index b-tree node...11

5.1.1. The 32-bit index b-tree branch node entry..11
5.1.2. The 32-bit (file) offset index entry...12
5.1.3. The 32-bit descriptor index b-tree leaf node entry..12

5.2. The 64-bit index b-tree node...13
5.2.1. The 64-bit index b-tree branch node entry..14
5.2.2. The 64-bit (file) offset index entry...14
5.2.3. The 64-bit descriptor index b-tree leaf node entry..14

5.3. The 64-bit 4k page index b-tree node...15
5.4. Index identifier..16

5.4.1. Node identifier type...16
6. The free map...18

6.1. The 32-bit free map...18
6.2. The 64-bit free map...18
6.3. The 64-bit 4k page free map...19
6.4. Free map types..19
6.5. Notes...19

7. The density list..20
7.1. The 32-bit density list..20
7.2. The 64-bit density list..21
7.3. The 64-bit 4k page density list..21
7.4. The density list flags..22
7.5. The density list entry...22

8. Blocks...22
8.1. The 32-bit block..22
8.2. The 64-bit block..23
8.3. The 64-bit 4k page compressed block...23
8.4. Block type...24

9. The array...24
9.1. The 32-bit array...24

page v

9.2. The 64-bit array...25
10. The local descriptors...25

10.1. The 32-bit local descriptors...25
10.1.1. The 32-bit local descriptor branch nodes..26
10.1.2. The 32-bit local descriptors leaf node...26

10.2. The 64-bit local descriptors...26
10.2.1. The 64-bit local descriptor branch nodes..27
10.2.2. The 64-bit local descriptors leaf node...27

11. The table...27
11.1. The table block..28

11.1.1. Table block header..28
11.1.2. The table type..29
11.1.3. The table fill level..29
11.1.4. The table block index..30

11.2. The table value reference..30
11.2.1. Internal table value reference...31

11.3. The b5 table header...31
11.4. The 6c table...32

11.4.1. The 6c table header...32
11.4.2. The b5 table header entry..33
11.4.3. The record entries..33

11.5. The 7c table...33
11.5.1. The 7c table header...33
11.5.2. The 7c column definition...34
11.5.3. The b5 table header entry..34
11.5.4. The record entries..35

The record entries branch...35
The record entries leaf..35

11.5.5. The values array entries...35
11.6. The 8c table...36

11.6.1. The b5 table header entry..36
11.6.2. The record entries..36

11.7. The 9c table...36
11.7.1. The 9c table header...37
11.7.2. The b5 table header entry..37
11.7.3. The record entries..37

11.8. The a5 table...37
11.9. The ac table...37

11.9.1. The ac table header..38
11.9.2. The ac column definition...38
11.9.3. The b5 table header entry..39
11.9.4. The record entries..39

The record entries branch...39
The record entries leaf..39

11.9.5. The values array entries...39
11.10. The bc table...40

11.10.1. The b5 table header entry..40
11.10.2. The record entries..40

The record entries branch...40
The record entries leaf..41

11.11. The cc table...41
11.12. The item and item value types...41

page vi

12. The PFF items...41
12.1. Internal nodes..41
12.2. The message store...43
12.3. The name-to-id map..44
12.4. The root folder and folder items...45

12.4.1. Inbox special folders..46
12.4.2. The related sub folders item..46
12.4.3. The related sub messages item..46
12.4.4. The related sub associated contents item..46
12.4.5. Note...47
12.4.6. Unknown 1718 sub item..47
12.4.7. Note...47

12.5. The message item..47
12.5.1. The attachments sub item..48

The attachment sub item...48
12.5.2. The recipients sub item..49
12.5.3. Note...49

12.6. The appointment item...49
12.7. The contact item..50
12.8. The distribution list item...50
12.9. The e-mail item...50
12.10. The sticky note item..50
12.11. The task item...50
12.12. The message manager (associated) item...50
12.13. The migration status (associated) item..50
12.14. The rule organizer (associated) item...50
12.15. The rule message (associated) item...51
12.16. The extended rule message (associated) item...51
12.17. The configuration RSS rule (associated) item...51

13. LZFu compression..51
14. MacBinary encoding...52

14.1. Header...53
15. Remarks..54

15.1. Encrypted PFF with encryption type none..54
15.2. PFF missing root index node and allocation table pages...55
15.3. PFF with split attached message...55
15.4. PFF with extended ASCII strings with Unicode codepage...55
15.5. PFF with Unicode string which contains 16-bit extended ASCII string...............................55

16. Notes...56
16.1. Root items...56

16.1.1. PST..56
Active searches list (513)..57
Search criteria list (609)..57
Search gatherer descriptor (673)..57

16.1.2. OST...58
16.1.3. PAB...59

16.2. GUID identifiers..60
16.2.1. PST..60
16.2.2. OST...60

16.3. Note..62
Appendix A. References...64
Appendix B. GNU Free Documentation License..65

page vii

page viii

1. Overview
The PFF (Personal Folder File) and OFF (Offline Folder File) format is used to store Microsoft
Outlook e-mails, appointments and contacts. The OST (Offline Storage Table), PAB (Personal
Address Book) and PST (Personal Storage Table) file format consist of the PFF format.

A PFF consist of the following distinguishable elements:
• file header
• file header data
• index branch node
• index leaf node
• (file) offset index
• (item) descriptor index
• local descriptors
• item table type

Characteristics Description

Byte order little-endian

Date and time values Filetime in UTC

Character string ASCII strings are stored in extended ASCII with a codepage.
Unicode strings are stored in UTF-16 little-endian without the byte order
mark (BOM).

Certain elements of the PFF format are related to the Microsoft (Office) Outlook Messaging API
(MAPI).

[MS-PST] defines two types of the PFF:
• the 32-bit ANSI format
• the 64-bit Unicode format

A third variant was discovered in an Outlook 2013 OST file namely:
• the 64-bit Unicode format with 4k (4096 bytes) pages.

1.1. Test version

Files created by the following version of programs were used to test the information within this
document:
• Microsoft Outlook 2000
• Microsoft Outlook 2003
• Microsoft Outlook 2007
• Microsoft Outlook 2010
• Microsoft Outlook 2013
• Exmerge
• Scanpst

2. File header
The file header common to both the 32-bit and 64-bit PFF format consists of 24 bytes and consists
of:

page 1

offset size value description

0 4 \x21\x42\x44\x4e
(!BDN)

The signature (magic identifier)

4 4 A weak CRC32 of the following 471
bytes
In 64-bit files this CRC seems to be
ignored because of the CRC at the end of
the file header data at offset 524.

8 2 \x41\x42 (AB)
\x53\x4d (SM)
\x53\x4f (SO)

The content type (client signature)
AB is used for PAB files
SM is used for PST files
SO is used for OST files

10 2 The data version (NDB version)
NDB is short for node database
\x0e\x00 for a 32-bit PFF
\x0f\x00 for a 32-bit PFF
\x15\x00 for a 64-bit PFF
(64-bit PFF by Visual Recovery)
\x17\x00 for a 64-bit PFF
\x24\x00 for a 64-bit PFF with 4k pages

12 2 Content version (Client version)
Unknown use

14 1 0x01 Creation Platform
Unknown use
must be 0x01 according to [MS-PST]
0x02 found in scanpst recovered pst

15 1 0x01 Access Platform
Unknown use
must be 0x01 according to [MS-PST]
0x02 found in scanpst recovered pst

16 4 0 Unknown (dwOpenDBID)
Reserved
Sometimes contains: 0x40 0x00 0x00
0x00 (unclean unmount?)

20 4 0 Unknown (dwOpenClaimID)
Reserved
(mostly empty) (unclean unmount?)

2.1. The 32-bit header data

The 32-bit header data is 488 bytes of size and consists of:
offset size value description

24 4 Next (available) index pointer

28 4 Next (available) index back pointer
In more recent pst/ost files used for the
density list at offset 0x4200

page 2

offset size value description

32 4 Seed value
Unique value for the CRC calculation,
which changes for consecutive created
files

36 128 (32 x 4) Descriptor index high water marks (NID
high-water marks)

Part of the header data to which [MS-PST] refers to as the root

164 4 0 Unknown
Reserved

168 4 Total file size

172 4 Last data allocation table offset
The file offset to the last data allocation
table

176 4 Total available data size

180 4 Total available page size

184 4 The descriptor index back pointer
the value that should appear in the parent
offset of the root node of the descriptor
index b-tree

188 4 The descriptor index file offset
File offset of the the of the descriptor
index b-tree

192 4 The (file) offset index back pointer
the value that should appear in the parent
offset of the root node of the (file) offset
index b-tree

196 4 The (file) offset index file offset
File offset of the the of the (file) offset
index b-tree

200 1 Allocation table validation type
See section: 2.3 Allocation table
validation type

201 1 0 Unknown
Reserved

202 2 0 Unknown
Reserved

End of the root

204 128 The initial data free map

332 128 The initial page free map

460 1 0x80 Senitinal

461 1 Encryption type
See section: 2.5 Encryption type

page 3

offset size value description

462 2 0 Unknown
Reserved
In older formats (rgbReserved Index)
which is 17 bytes of size

464 8 0 Unknown
Reserved

472 4 0 Unknown
Reserved

476 3 0 Unknown
Reserved

479 1 0 Unknown
Reserved

480 32 0 Unknown
Reserved

Data after file header data probably extended data for AMap

offset size value description

512 4 Unknown value
Changes consecutive created pst files

516 4 Unknown value
Changes consecutive created pst files

520 4 Unknown value
Does not change in consecutive created
pst files

524 4 Unknown value
Changes consecutive created pst files

528 16880 Empty values

2.2. The 64-bit header data

The 64-bit header data is 540 bytes of size and consists of:
offset size value description

24 8 Unused (bidUnused)
Sometimes contains: 0x04 0x00 0x00
0x00 0x01 0x00 0x00 0x00

32 8 Next (available) index back pointer
In more recent pst/ost files used for the
density list at offset 0x4200

40 4 Seed value
Unique value for the CRC calculation,
which changes for consecutive created
files

page 4

offset size value description

44 128 (32 x 4) Descriptor index high water marks (NID
high-water marks)

172 8 0 Unknown (qwAlign)
Unused

Part of the header data to which [MS-PST] refers to as the root

180 4 0 Unknown (cOrphans)
Reserved

184 8 Total file size

192 8 Last data allocation table offset
The file offset to the last data allocation
table

200 8 Total available data size

208 8 Total available page size

216 8 The descriptor index back pointer
the value that should appear in the parent
offset of the root node of the descriptor
index b-tree

224 8 The descriptor index file offset
File offset of the the of the descriptor
index b-tree

232 8 The (file) offset index back pointer
the value that should appear in the parent
offset of the root node of the (file) offset
index b-tree

240 8 The (file) offset index file offset
File offset of the the of the (file) offset
index b-tree

248 1 Allocation table validation type
See section: 2.3 Allocation table
validation type

249 1 0 Unknown (bARVec)
Reserved

250 2 0 Unknown (cARVec)
Reserved

End of the root

252 4 0 Unknown (dwAlign)
Alignment data according to [MS-PST]

256 128 0xff The initial data free map
According to [MS-PST] deprecated

384 128 0xff The initial free page map
According to [MS-PST] deprecated

512 1 0x80 Senitinal

page 5

offset size value description

513 1 Encryption type
See section: 2.5 Encryption type

514 2 0 Unknown (bReserved)
Reserved

516 8 Next (available) index pointer

524 4 A weak CRC32 of the previous 516 bytes

528 3 0 Unknown (rgbVersionEncoded)
Reserved

531 1 0 Unknown (bLockSemaphore)
Reserved

532 32 0 Unknown (rgbLock)
Reserved

Data after file header data probably extended data for AMap

offset size value description

538 8 Unknown value

546 8 Unknown value

552 ...

2.3. Allocation table validation type

Value Identifier Description

0x00 INVALID_AMAP One or more allocation tables are invalid

0x01 VALID_AMAP1 All allocation tables are valid
According to [MS-PST] this value is deprecated

0x02 VALID_AMAP2 All allocation tables are valid

2.4. Descriptor index high water marks

Unknown use
NID => Node ID ? Seems to be the equivalent of the items identifiers
type=n is the number in the array

Under high-water mark, any object less than the user's security level can be opened, but the object is
relabeled to reflect the highest security level currently open. Hence the name.

2.4.1. Descriptor index high water mark type

Value Identifier Description

0x00000400 NID_TYPE_NOR
MAL_FOLDER

Folder or any other type

page 6

Value Identifier Description

0x00004000 NID_TYPE_SEAR
CH_FOLDER

Search folder

0x00008000 NID_TYPE_ASSO
C_MESSAGE

Associated content

0x00010000 NID_TYPE_NOR
MAL_MESSAGE

Message

2.5. Encryption type

Value Identifier Description

0x00 NDB_CRYPT_NO
NE

No encryption

0x01 NDB_CRYPT_PE
RMUTE

Compressible encryption
According to [MS-PST] this is encryption with 'permutation
algorithm', which is a substitution cipher

0x02 NDB_CRYPT_CY
CLIC

High encryption
According to [MS-PST] this is encryption with 'cyclic
algorithm', which is similar to the 3 rotor Enigma cipher

3. Pages
[MS-PST] defines a common structure for the allocation table, the index b-tree, the free map and the
density list as the page.

3.1. The 32-bit page

The 32-bit page is 512 bytes of size and consists of:
offset size value description

0 500 Page data

500 1 Page type
See section: 3.4 Page type

501 1 Copy of page type

502 2 Signature

504 4 The back pointer

508 4 A weak CRC32 of the 496 bytes of the
table data

3.2. The 64-bit page

The 64-bit page is 512 bytes of size and consists of:

page 7

offset size value description

0 496 Page data

496 1 Page type
See section: 3.4 Page type

497 1 Copy of page type

498 2 Signature

500 4 A weak CRC32 of the 496 bytes of the
table data

504 8 The back pointer

3.3. The 64-bit 4k page

The 64-bit 4k page is 4096 bytes of size and consists of:
offset size value description

0 496 Page data

4072 1 Page type
See section: 3.4 Page type

4073 1 Copy of page type

4074 2 Signature

4076 4 A weak CRC32 of the 4072 bytes of the
table data

4080 8 The back pointer

4088 8 Unknown

3.4. Page type

Value Identifier Description

0x80 ptypeBBT Offset index b-tree node

0x81 ptypeNBT Descriptor index b-tree node

0x82 ptypeFMap Free map

0x83 ptypePMap Page allocation table

0x84 ptypeAMap Data allocation table

0x85 ptypeFPMap Free page map

0x86 ptypeDL Density list

4. The allocation table
The PFF contains several allocation tables. These tables are used to describe what parts of the PFF
are in use and free.

page 8

4.1. The 32-bit allocation table

The 32-bit allocation is 512 bytes of size and consists of:
offset size value description

0 4 Unknown
Padding

4 496 The allocation table data
Each bit represents a certain number of
bytes (block). A value of 1 means that the
block is allocated, 0 if not

Footer 12 bytes of size

500 1 0x83
0x84

Page type
See section: 3.4 Page type and
4.4 Allocation table types

501 1 0x83
0x84

Copy of page type

502 2 0 Signature
According to [MS-PST] this should be
empty

504 4 The back pointer
The value contains the allocation table
offset

508 4 A weak CRC32 of the 496 bytes of the
allocation table data

4.2. The 64-bit allocation table

The 64-bit allocation is 512 bytes of size and consists of:
offset size value description

0 496 The allocation table data
Each bit represents a certain number of
bytes (block). A value of 1 means that the
block is allocated, 0 if not

Footer 16 bytes of size

496 1 0x83
0x84

Page type
See section: 3.4 Page type and
4.4 Allocation table types

497 1 0x83
0x84

Copy of page type

498 2 Signature
According to [MS-PST] this should be
empty

500 4 A weak CRC32 of the 496 bytes of the
allocation table data

page 9

offset size value description

504 8 The back pointer
The value contains the allocation table
offset

4.3. The 64-bit 4k page allocation table

offset size value description

0 4072 The allocation table data
Each bit represents a certain number of
bytes (block). A value of 1 means that the
block is allocated, 0 if not

Footer 24 bytes of size

4072 1 0x83
0x84

Page type
See section: 3.4 Page type and
4.4 Allocation table types

4073 1 0x83
0x84

Copy of page type

4074 2 Signature

4076 4 A weak CRC32 of the first 4072 bytes of
the allocation table data

4080 8 Back pointer
The value contains the allocation table
offset

4088 8 Unknown

4.4. Allocation table types

For both the 32-bit ANSI format and the 64-bit Unicode format the behavior of the allocation tables
is as following:

• The allocation table at offset 0x4400 with page type 0x84 addresses 64 byte blocks. Where
the first bit in the allocation table data refers to offset 0x4400. These are used for the data
allocation. The tables repeat themselves every 496 x 8 x 64 = 253952 bytes.

• The allocation table at offset 0x4600 with page type 0x83 addresses 512 byte blocks. Where
the first bit in the allocation table data refers to offset 0x4400. These are used for the page
allocation. The tables repeat themselves every 496 x 8 x 512 = 2031616 bytes.

For the 64-bit Unicode format with 4k (4096 bytes) pages format the allocation tables is as
following:

• The allocation table at offset 0x22000 with page type 0x84 addresses 64 byte blocks. Where
the first bit in the allocation table data refers to offset 0x22000. These are used for the data
allocation. The tables repeat themselves every 4072 x 8 x 512 = 16678912 bytes.

• Note that page type 0x83 not yet been seen to be used in this format type.

page 10

5. The index b-tree
The PFF consists of multiple index b-trees.
• The (file) offset index b-tree (Block B-Tree (BBT))
• The (item) descriptor index b-tree (Node B-Tree (NBT))

These b-trees have a similar basic structure.

An index b-tree consists of:
• branch nodes that point to branch or leaf nodes
• leaf nodes that contain the index data

5.1. The 32-bit index b-tree node

Both the 32-bit branch and leaf node have a similar structure which is 512 bytes of size and consists
of:
offset size value description

0 496 Node entries
(number of records x entry size)
Maximum of 496 the remaining values are
zeroed

Footer 16 bytes of size

496 1 The number of entries
The number of entries that are used

497 1 The maximum number of entries

498 1 The size of an entry

499 1 Node level
A zero value represents a leaf node
A value greater than zero branch nodes
with the highest level representing the
root

500 1 0x80
0x81

Page type
See section: 3.4 Page type

501 1 0x80
0x81

Copy of page type

502 2 Signature

504 4 Back pointer
must match the back pointer that pointed
to this node

508 4 A weak CRC32 of the first 500 bytes of
the index node

5.1.1. The 32-bit index b-tree branch node entry

The 32-bit index b-tree node entry is used in branch nodes. It is 12 bytes of size and consists of:

page 11

offset size value description

0 4 The index identifier of the first child node
Identifier of type node identifier
See section: 5.4 Index identifier

4 4 The back pointer

8 4 The (file) offset

The index b-tree node will contain the following values:
The maximum number of entries: 41
The size of an entry: 12

An index b-tree node can contain the same identifier value as a (file) offset index entry. This occurs
when the leaf node is the lowest identifier in the branch node.

5.1.2. The 32-bit (file) offset index entry

The 32-bit (file) offset index entry is used in leaf nodes. It is 12 bytes of size and consists of:
offset size value description

0 4 The identifier
Identifier of type block identifier

4 4 The (file) offset

8 2 The size

10 2 The reference count

The index b-tree node will contain the following values:
The maximum number of entries: 41
The size of an entry: 12

The first LSB of the identifier is reserved.

The second LSB of the identifier is used to indicate if the block is internal or not.
• 0 = is not internal (external)
• 1 = is internal (used for array and local descriptors)

In an encrypted PFF the internal flag also indicates if the corresponding entry is encrypted or not.
See section: 8.4 Block type for more information.

When the index tree is searched make sure to clear the first LSB in the identifier.

5.1.3. The 32-bit descriptor index b-tree leaf node entry

The 32-bit descriptor index b-tree leaf node entry is 16 bytes of size and consists of:
offset size value description

0 4 The (descriptor) index identifier
Identifier of type node identifier
See section: 5.4 Index identifier

page 12

offset size value description

4 4 The (file) offset index identifier of the
data

8 4 The (file) offset index identifier of the
local descriptors

12 4 The parent (descriptor) index identifier

The index b-tree node will contain the following values:
The maximum number of entries: 31
The size of an entry: 16

5.2. The 64-bit index b-tree node

Both the 64-bit branch and leaf node have a similar structure which is 512 bytes of size and consists
of:
offset size value description

0 488 Node entries
(number of records x entry size)
Maximum of 488 the remaining values are
zeroed

Footer 24 bytes of size

488 1 The number of entries
The number of entries that are used

489 1 The maximum number of entries

490 1 The size of an entry

491 1 Node level
A zero value represents a leaf node
A value greater than zero branch nodes
with the highest level representing the
root

492 4 Unknown
Padding

496 1 0x80
0x81

Page type
See section: 3.4 Page type

497 1 0x80
0x81

Copy of page type

498 2 Signature

500 4 A weak CRC32 of the first 496 bytes of
the index node

504 8 Back pointer
must match the back pointer that pointed
to this node

page 13

5.2.1. The 64-bit index b-tree branch node entry

The 64-bit index b-tree node entry is used in branch nodes. It is 24 bytes of size and consists of:
offset size value description

0 8 The index identifier of the first child node
Identifier of type node identifier, only 32-
bit are used
See section: 5.4 Index identifier

8 8 The back pointer

16 8 The (file) offset

The index b-tree node will contain the following values:
The maximum number of entries: 20
The size of an entry: 24

An index b-tree node can contain the same identifier value as a (file) offset index entry. This occurs
when the leaf node is the lowest identifier in the branch node.

5.2.2. The 64-bit (file) offset index entry

The 64-bit (file) offset index entry is used in leaf nodes. It is 24 bytes of size and consists of:
offset size value description

0 8 The index identifier
Identifier of type block identifier

8 8 The (file) offset

16 2 The size

18 2 The reference count

20 4 File offset of the data allocation table

The index b-tree node will contain the following values:
The maximum number of entries: 20
The size of an entry: 24

The first LSB of the identifier is reserved.

The second LSB of the identifier is used to indicate if the block is internal or not.
• 0 = is not internal (external)
• 1 = is internal (used for array and local descriptors)

In an encrypted PFF the internal flag also indicates if the corresponding entry is encrypted or not.
See section: 8.4 Block type for more information.

When the index tree is searched make sure to clear the first LSB in the identifier.

5.2.3. The 64-bit descriptor index b-tree leaf node entry

The 64-bit descriptor index b-tree leaf node entry is 32 bytes of size and consists of:

page 14

offset size value description

0 8 The (descriptor) index identifier
Identifier of type node identifier, only 32-
bit are used
See section: 5.4 Index identifier

8 8 The (file) offset index identifier of the
data

16 8 The (file) offset index identifier of the
local descriptors

24 4 The parent (descriptor) index identifier

28 4 Unknown
This value mainly contains 2, unless when
both the data and local descriptor are
empty.

The index b-tree node will contain the following values:
The maximum number of entries: 15
The size of an entry: 32

5.3. The 64-bit 4k page index b-tree node

In Outlook 2013, at least for OST files, a 4k (4096 bytes) page version of the 64-bit index b-tree
node was introduced.

Both the 64-bit branch and leaf node have a similar structure which is 4096 bytes of size and consists
of:
offset size value description

0 4056 Node entries
(number of records x entry size)
Maximum of 488 the remaining values are
zeroed

Footer 40 bytes of size

4056 2 The number of entries
The number of entries that are used

4058 2 The maximum number of entries

4060 1 The size of an entry

4061 1 Node level
A zero value represents a leaf node
A value greater than zero branch nodes
with the highest level representing the
root

4062 10 Unknown
Padding

4072 1 0x80
0x81

Page type
See section: 3.4 Page type

page 15

offset size value description

4073 1 0x80
0x81

Copy of page type

4074 2 Signature

4076 4 A weak CRC32 of the first 4072 bytes of
the index node

4080 8 Back pointer
must match the back pointer that pointed
to this node

4088 8 Unknown

The node entry structures are the same as those of the 64-bit index b-tree node (512 byte page)
version.

5.4. Index identifier

The index identifier is 32-bit of size and consists of:
offset size value description

0.0 5 bits Identifier type
See section: 5.4.1 Node identifier type

0.5 27 bits Identifier value

Note that the identifiers should be unique and are so for allocated descriptors. However unallocated
descriptors can have identifiers that are in use.

5.4.1. Node identifier type

The node identifier is used in both the item descriptor identifier and the table value reference. It
signifies the type of node the identifier is referencing.

Value Identifier Description

0x00 NID_TYPE_HID Table value (or heap node)
See section: 11 The table

0x01 NID_TYPE_INTE
RNAL

Internal node
See section: 12.1 Internal nodes

0x02 NID_TYPE_NOR
MAL_FOLDER

Folder item

0x03 NID_TYPE_SEAR
CH_FOLDER

Search folder item

0x04 NID_TYPE_NOR
MAL_MESSAGE

Message item

0x05 NID_TYPE_ATT
ACHMENT

Attachment item

0x06 NID_TYPE_SEAR Queue of changed search folder items

page 16

Value Identifier Description

CH_UPDATE_QU
EUE

0x07 NID_TYPE_SEAR
CH_CRITERIA_O
BJECT

Search folder criteria

0x08 NID_TYPE_ASSO
C_MESSAGE

Associated contents item

0x0a NID_TYPE_CON
TENTS_TABLE_I
NDEX

Unknown
Internal, Persisted View- related

0x0b NID_TYPE_REC
EIVE_FOLDER_T
ABLE

Inbox item (or received folder table)

0x0c NID_TYPE_OUT
GOING_QUEUE_
TABLE

Outbox item (or outgoing queue table)

0x0d NID_TYPE_HIER
ARCHY_TABLE

Sub folders item (or hierarchy table)
See section: 12.4.2 The related sub folders item

0x0e NID_TYPE_CON
TENTS_TABLE

Sub messages item (or contents table)
See section: 12.4.3 The related sub messages item

0x0f NID_TYPE_ASSO
C_CONTENTS_T
ABLE

Sub associated contents item (or associated contents table)
See section: 12.4.4 The related sub associated contents item

0x10 NID_TYPE_SEAR
CH_CONTENTS_
TABLE

Search contents table
Consists of an ac table

0x11 NID_TYPE_ATT
ACHMENT_TAB
LE

Attachments item
Consists of a 7c table

0x12 NID_TYPE_RECI
PIENT_TABLE

Recipients item
Consists of a 7c table

0x13 NID_TYPE_SEAR
CH_TABLE_IND
EX

Unknown
Internal, Persisted View- related

0x14 Unknown
Related + 18 folder item
Consists of a 8c table

0x15 Unknown
Related + 19 folder item
Consists of a 8c table

0x16 Unknown
Unknown 1718 sub item

page 17

Value Identifier Description

Consists of a 7c table

0x17 Unknown
Unknown 1751 sub item

0x18 Unknown
Unknown 1784 sub item

0x1f NID_TYPE_LTP Local descriptor value
See section: 10 The local descriptors

6. The free map
The free map contains information about the longest consecutive number of bytes in the data
allocation tables.

According to [MS-PST] the free maps should not be used. The density list should be used instead.

6.1. The 32-bit free map

According to [MS-PST] the page free map only has a 64-bit format. However 32-bit PFF have been
seen containing page type 0x85. See notes below.

The 32-bit free map is 512 bytes of size and consists of:
offset size value description

0 4 Unknown
Padding

4 496 The free map data

500 1 0x82
0x85

Page type
See section: 3.4 Page type and 6.4 Free
map types

501 1 0x82
0x85

Copy of page type

502 2 Signature
According to [MS-PST] this should be
empty

504 4 The back pointer
The value is the free map offset

508 4 A weak CRC32 of the 496 bytes of the
free map data

6.2. The 64-bit free map

The 64-bit free map is 512 bytes of size and consists of:

page 18

offset size value description

0 496 The free map data

496 1 0x82
0x85

Page type
See section: 3.4 Page type and 6.4 Free
map types

497 1 0x82
0x85

Copy of page type

498 2 Signature
According to [MS-PST] this should be
empty

500 4 A weak CRC32 of the 496 bytes of the
free map data

504 8 The back pointer
The value is the free map offset

6.3. The 64-bit 4k page free map

TODO, not seen so far

6.4. Free map types

The free map with page type 0x82 addresses the maximum number of continuous free data blocks in
the corresponding data allocation table. Every byte in the free map data represents a separate data
allocation table.

The free map with page type 0x85 addresses free pages. Every bit int the free map data represents a
separate page allocation table.

6.5. Notes

offset size value description

0 4 Next node back pointer
must match the back pointer of the next
node

4 4 Next node offset

8 488 Unknown values
Maximum of 488 the remaining values are
zeroed

496 1 Unknown value
0x00 in most nodes
0x40

497 1 Unknown value
0x00 in most nodes
0x0d
0x20 in some (last node?)

page 19

offset size value description

498 1 Empty value

499 1 Empty value

500 2 Type indicator
0x85 0x85 is used for ???

502 2 Unknown value
Node identifier?

504 4 Back pointer
must match the back pointer that pointed
to this node

508 4 A weak CRC32 of the first 500 bytes of
the index node

7. The density list
The density list is used to maintain a list of the data allocation tables in order of density. The list
starts with the low-density (free) data allocation tables?

According to [MS-PST] there is only a single density list at offset 0x4200.

Only found in newer PST and OST files.

7.1. The 32-bit density list

The 32-bit density list is 512 bytes of size and consists of:
offset size value description

0 1 Flags
See section: 7.4 The density list flags

1 1 Number of list entries

2 2 0 Unknown
Padding

4 4 Next page index

8 480 Density list entries
See section: 7.5 The density list entry
Maximum of 480 the remaining values are
zeroed

488 12 Unknown

Footer 12 bytes of size

500 1 0x86 Page type
See section: 3.4 Page type

501 1 0x86 Copy of page type

502 2 Signature

page 20

offset size value description

504 4 The back pointer

508 4 A weak CRC32 of the first 500 bytes of
the density list

7.2. The 64-bit density list

The 64-bit density list is 512 bytes of size and consists of:
offset size value description

0 1 Flags
See section: 7.4 The density list flags

1 1 Number of list entries

2 2 0 Unknown
Padding

4 4 Next page index

8 476 Density list entries
See section: 7.5 The density list entry
Maximum of 476 the remaining values are
zeroed

484 12 Unknown

Footer 16 bytes of size

496 1 0x86 Page type
See section: 3.4 Page type

497 1 0x86 Copy of page type

498 2 Signature

500 4 A weak CRC32 of the first 496 bytes of
the density list

504 8 The back pointer

7.3. The 64-bit 4k page density list

Seen at offset 0x21000
offset size value description

Unknown

Footer 24 bytes of size

4072 1 0x86 Page type
See section: 3.4 Page type

4073 1 0x86 Copy of page type

4074 2 Signature

4076 4 A weak CRC32 of the first 4072 bytes of
the density list

page 21

offset size value description

4080 8 Back pointer
The value contains the allocation table
offset

4088 8 Unknown

7.4. The density list flags

Value Identifier Description

0x01 DFL_BACKFILL_
COMPLETE

Set if no backfill operation is in progress
This flag has influence on the meaning of the next page index
value

7.5. The density list entry

The density list entry is 32-bit of size and consists of:
offset size value description

0.0 20 bits The page number of the data allocation
table

2.4 12 bits Number of free entries in the data
allocation table

The corresponding file offset of a page number is determined by the following calculation:
offset = page number x page size
offset = page number x 512

8. Blocks
[MS-PST] defines a common structure for storing raw data, data arrays and local descriptors as the
block. Blocks should be 64 byte aligned, which is the granularity of the data allocation map. The the
maximum size of a block is 8192 bytes. Blocks contain other data types like the local descriptor list,
array and table.

In a 32-bit PST the commonly used largest block size is 8180?

At the end of the block after the block data, the block contains additional data which refers back to
the (file) offset index nodes.

8.1. The 32-bit block

The 32-bit block is variable of size in 64 byte increments and consists of:
offset size value description

0 ... Block data

... ... Unknown

page 22

offset size value description

Padding, not necessarily 0

Footer 12 bytes of size

... 2 Block data size

... 2 Signature

... 4 Back pointer

... 4 A weak CRC32 of the block data
Not including the padding

8.2. The 64-bit block

The 64-bit block is variable of size in 64 byte increments and consists of:
offset size value description

0 ... Block data

... ... 0 Unknown
Padding, not necessarily 0

Footer 16 bytes of size

... 2 Block data size

... 2 Signature

... 4 A weak CRC32 of the block data
Not including the padding

... 8 Back pointer

8.3. The 64-bit 4k page compressed block

The 64-bit 4k page block is variable of size in 512 byte increments and consists of:
offset size value description

0 ... Block data

... ... 0 Unknown
Padding, not necessarily 0

Footer 24 bytes of size

... 2 Block data size

... 2 Signature

... 4 A weak CRC32 of the block data
Not including the padding

... 8 Back pointer

... 2 2 Unknown

... 2 Uncompressed block data size
Or could this value be 32-bit?

... 4 Unknown (empty values)

page 23

In the 64-bit 4k page the block data can be compressed. The compression method used is
deflate/RFC1951.

If the block is compressed note that the size in the corresponding 64-bit (file) offset index entry
contains the compressed block data size and not that of the uncompressed data.

TODO confirm encryption comes before decompression, for now it seems that compressed files are
not encrypted. Can an array be compressed if so how.

8.4. Block type

Value Identifier Description

Data block The raw data block has the 'external' bit set on the (file) offset
index identifier. In a raw data block the block data value can be
encrypted.

0x01 XBLOCK The array block is used to store raw data greater than 8176
bytes. [MS-PST] refers to this structure as the XBLOCK
which is a single level array.
See section: 9 The array for the contents of the block data
value.

0x01 XXBLOCK The array block is used to store raw data greater than 2^16 x
8176 bytes. [MS-PST] refers to this structure as the
XXBLOCK which is a two level array.
See section: 9 The array for the contents of the block data
value.

0x02 SLBLOCK
SIBLOCK

The local descriptors
See section: 10 The local descriptors for the contents of the
block data value.

9. The array
The array is used when a (file) offset index identifier contains more data than can fit in a single
(descriptor) data block. The array contains a set of (file) offset index identifiers.

The array is used for both table as for item value data.

The total data size should equal the sum of all the (file) offset index entry sizes referenced by the
array.

The data of the individual array entries should be concatenated to each other in order.

According to [MS-PST] the maximum level of indirection is 2.

9.1. The 32-bit array

The 32-bit array is variable of size and consists of:

page 24

offset size value description

0 1 0x01 The array signature (or block type)

1 1 0x01
0x02

The array (indirection) level
1 being the lowest level

2 2 The number of array entries

4 4 The total data size of the array entries

8 (amount x 4) 4 byte array entries containing (file) offset
index identifiers

9.2. The 64-bit array

The 64-bit array is variable of size and consists of:
offset size value description

0 1 0x01 The array signature (or block type)

1 1 The array (indirection) level
1 being the lowest level

2 2 The number of array entries

4 4 The total data size of the array entries

8 (amount x 8) 8 byte array entries containing (file) offset
index identifiers

10. The local descriptors
The local descriptors identifier in the descriptor index b-tree leaf node entry refers to a (file) offset
index entry which contains the file offset and data size of the local descriptors nodes.

The local descriptors nodes make up a tree, that most of the time consists of only one level, therefore
it was initially considered as a local descriptor list.

According to [MS-PST] the maximum level of indirection is 0x01.

10.1. The 32-bit local descriptors

The local descriptors contain descriptor (file) offset mappings for table data. The 32-bit local
descriptors are variable in size.

offset size value description

0 1 0x02 The signature
(or block type)

1 1 The node (indirection) level

2 2 The number of entries

4 (amount x entry
size)

The entries

page 25

10.1.1. The 32-bit local descriptor branch nodes

The 32-bit local descriptors branch nodes have a level other than 0x00. An entry within the node is 8
bytes of size.

offset size value description

0 4 The descriptor identifier

4 4 The (file) offset index identifier of the sub
node.

The lower bit in data identifier should be cleared before searching the value in the (file) offset index.

If an attachment identifier is stored in a local descriptor branch node the corresponding the (file)
offset index identifier of the data is in the sub node of the local descriptor branch node.

10.1.2. The 32-bit local descriptors leaf node

The 32-bit local descriptors leaf node has a level of 0x00. An entry within the node is 12 bytes of
size.

offset size value description

0 4 The descriptor identifier

4 4 The (file) offset index identifier of the
data

8 4 The (file) offset index identifier of the
local descriptors

The lower bit in data identifier should be cleared before searching the value in the (file) offset index.

The (file) offset index identifier of the local descriptors are mainly used in email items for
attachments. It refers to the local descriptors of the attachment item.

10.2. The 64-bit local descriptors

The local descriptors contain descriptor (file) offset mappings for table data. The 64-bit local
descriptors are variable in size.

offset size value description

0 1 0x02 The signature

1 1 The node (indirection) level

2 2 The number of entries

4 4 0 Unknown
Padding

8 (amount x entry The entries

page 26

offset size value description

size)

10.2.1. The 64-bit local descriptor branch nodes

The 64-bit local descriptors branch nodes have a level other than 0x00. An entry within the node is
16 bytes of size.

offset size value description

0 8 The descriptor identifier
Identifier of type node identifier, only 32-
bit are used
See section: 5.4 Index identifier

8 8 The (file) offset index identifier of the sub
node.

The lower bit in data identifier should be cleared before searching the value in the (file) offset index.

If an attachment identifier is stored in a local descriptor branch node the corresponding the (file)
offset index identifier of the data is in the sub node of the local descriptor branch node.

10.2.2. The 64-bit local descriptors leaf node

The 64-bit local descriptors leaf node has a level of 0x00. An entry within the node is 24 bytes of
size.

offset size value description

0 8 The descriptor identifier
Identifier of type node identifier, only 32-
bit are used
See section: 5.4 Index identifier

8 8 The (file) offset index identifier of the
data

16 8 The (file) offset index identifier of the
local descriptor

The lower bit in data identifier should be cleared before searching the value in the (file) offset index.

The (file) offset index identifier of the local descriptor is mainly used in email items for attachments.
It refers to the local descriptors of the attachment item.

11. The table
The table contains entries which make up the items like email or contact. If the encryption type was
set in the file header data the entire table is encrypted. Note that the not encrypted flag in the offset
identifier can overwrite the table being encrypted.

page 27

The data identifier in the descriptor index b-tree leaf node entry refers to a (file) offset index entry
which contains the file offset and data size of the table.

The table is made up of one or more table blocks. These table blocks can be stored in a table array.

11.1. The table block

The table block is variable of size and consists of:
• table block header
• table block values
• table block index

11.1.1. Table block header

The table block header is 16 bytes of size and consists of:
offset size value description

0 2 The table block index offset

2 1 0xec Signature

3 1 The table type
(or client signature)
See section: 11.1.2 The table type

4 4 The table value reference

8 4 Fill level array
(8 x 4 bits entry)

Only the first table block in a table array contains a table header.

According to [MS-PST] the fill level array only applies to the 8 first table blocks of the table array.
The table block header of 2nd to 8th table array entries is 2 bytes of size and consists of:

offset size value description

0 2 The table index offset

This header is repeated every table array entry not needed to contain a fill level array.

The table header of the 9th table array entry is 66 bytes of size and consists of:

offset size value description

0 2 The table index offset

2 64 Fill level array
(128 x 4 bits entry)

This header is repeated every 128 table array entries, e.g. in table array entry 137.

According to [MS-PST] the fill level array entries for non existing table array entries should be set to

page 28

0.

11.1.2. The table type

The following table types are currently known.

Table type Description Features

0x6c 6c table Has GUID record entry identifiers
Has table specific table header
Has b5 table header
Has a GUID table values array

0x7c 7c table
(Table context)

Has MAPI property (based) record entry identifiers
Has table specific table header
Has b5 table header
Has column definitions array
Has a table values array

0x8c 8c table Has MAPI property (based) record entry identifiers
Has b5 table header

0x9c 9c table Has GUID record entry identifiers
Has table specific table header
Has b5 table header

0xa5 a5 table Has MAPI property (based) record entry identifiers

0xac ac table Has MAPI property (based) record entry identifiers
Has table specific table header
Has b5 table header
Has column definitions array
Has a table values array

0xb5 b5 table header
(B-Tree on heap)

0xbc bc table
(Property context)

Has MAPI property (based) record entry identifiers
Has b5 table header

0xcc cc table Unknown

11.1.3. The table fill level

Value Identifier Description

0x0 FILL_LEVEL_EM
PTY

value >= 3584 bytes free or non-existent data block

0x1 FILL_LEVEL_1 2560 >= value > 3584 bytes free

0x2 FILL_LEVEL_2 2048 >= value > 2560 bytes free

0x3 FILL_LEVEL_3 1792 >= value > 2048 bytes free

0x4 FILL_LEVEL_4 1536 >= value > 1792 bytes free

0x5 FILL_LEVEL_5 1280 >= value > 1536 bytes free

page 29

Value Identifier Description

0x6 FILL_LEVEL_6 1024 >= value > 1280 bytes free

0x7 FILL_LEVEL_7 786 >= value > 1024 bytes free

0x8 FILL_LEVEL_8 512 >= value > 786 bytes free

0x9 FILL_LEVEL_9 256 >= value > 512 bytes free

0xa FILL_LEVEL_10 128 >= value > 256 bytes free

0xb FILL_LEVEL_11 64 >= value > 128 bytes free

0xc FILL_LEVEL_12 32 >= value > 64 bytes free

0xd FILL_LEVEL_13 16 >= value > 32 bytes free

0xe FILL_LEVEL_14 8 >= value > 16 bytes free

0xf FILL_LEVEL_FU
LL

value < 8 bytes free

11.1.4. The table block index

The table block index is variable of size and consists of:
offset size value description

0 2 The number of index offsets

2 2 The number of unused offsets items

4 (amount + 1) x
2

Array of index offsets
An index offset contains the offset of the
table block value. The index offset is
relative to the start of the table block.

Note that:
• the first index offsets is referred to as number 1;
• the index offsets are stored in order;
• the last index offset does not have to match the table block index offset;
• the number of index offsets can be 0.

11.2. The table value reference

The table value reference is formatted in different ways, it can point to data either in within the table
block or in some other block.

The table value reference is 32-bit of size and consists of:
offset size value description

0.0 5 bits The value reference type
See section: 5.4.1 Node identifier type

0.5 11 bits The value reference index

2.0 16 bits The value reference array index

• internal table value references have the all the low order 4 bits zero e.g. 0x0020, the value needs

page 30

to be right shifted by 5 bits, e.g. 0x0001. This value is the first entry in the the table index (starts
at 1), so it points to a table index value offset e.g. 12 (0xc). for internal table values references
the high order 16 bits are used to indicate which table array entry should be used, e.g. a high
order value of 1 points to the second table array entry;

• external table value references have some of the low order 4 bits set (and the value reference
array index is 0). They are descriptor list identifiers that refer to another location of data.

Check with [MS-PST] p 56

11.2.1. Internal table value reference

An internal table value reference refers to the first table index value pair that contain the table values
descriptor.

The internal table value reference for:
Table type Use of internal table value reference

0x6c points to table specific 6c table header

0x7c points to table specific 7c table header

0x8c points to b5 table header

0x9c points to table specific 9c table header

0xa5 points to record entries

0xac points to table specific ac table header

0xbc points to b5 table header

11.3. The b5 table header

The b5 table header is used in all table types except the a5 table. It contains information how the
record entries are formatted. It consists of 8 bytes:

offset size value description

0 1 0xb5 Table header type

1 1 The size of the record entry identifier
Either 2, 4, 8 or 16

2 1 The size of the record entry value
0 > value >= 32

3 1 The level of record entries

4 4 record entries reference

The record entry index reference refers to the table index value pair that points to record entries. If
the record entries reference is zero there are no record entries.

The level of the record entries is used to distribute the record entries over multiple table values.
Intermediate level record entries are variable of size and consist of:

page 31

offset size value description

0 ... record entry identifier (key)

... 4 record entries sub reference

Where leaf level record entries are variable of size and consist of:

offset size value description

0 ... record entry identifier (key)

... 4 record entry data

The size of an individual record entry is the combination of the record entry identifier and value size.

The b5 table header values differs for different tables:
Table type record entry identifier

size
record entry value size record entry size

0x6c 16 2 18

0x7c 4 2 6

0x7c 4 4 8

0x8c 8 4 12

0x9c 16 4 20

0xac 4 4 8

0xbc 2 6 8

The individual table sections provide more information about the values in the record entries.

11.4. The 6c table

The bc table has table values that contain:
• a b5 table header
• a 6c table header
• record entries that contain contain GUID descriptor values and the value array information
• value array (table) entries that contain the item value information

11.4.1. The 6c table header

The 6c table header consists of 8 bytes:

offset size value description

0 4 The b5 table header index reference

4 4 Values array entries index reference

page 32

11.4.2. The b5 table header entry

The 6c table uses the b5 table header with a record entry identifier size of 16 and a record entry
value size of 2. The record entries reference refers to the record entries. If the record entries
reference is zero there are no record entries.

11.4.3. The record entries

A b5 table header with a record entry identifier size of 16 and a record entry value size of 2 refers to
a specific type of record entry. This type of record entry consists of 18 bytes:

offset size value description

0 16 A GUID

16 2 Unknown
First part of the value in
PRQ_ID_SECURE4

11.5. The 7c table

The bc table has table values that contain:
• a b5 table header
• a 7c table header

• 7c column definitions that contain the item type information
• record entries that contain the value array information
• value array (table) entries that contain the item value information

11.5.1. The 7c table header

The 7c table header consists of 22 bytes:

offset size value description

0 1 0x7c Table header type

1 1 The number of column definitions

2 2 values array entry end offset 32-bit values
End offset of the 4 or 8 byte values

4 2 values array entry end offset 16-bit values
End offset of the 2 byte values

6 2 values array entry end offset 8-bit values
End offset of the 1 byte values

8 2 values array entry end offset cell existence
block
(The values array entry size)

10 4 The b5 table header index reference

14 4 Values array entries index reference

page 33

offset size value description

18 4 Unknown (hidIndex)
Deprecated according to [MS-PST] and
should be set to 0

If the b5 header table index reference is zero the table should not contain any record entries. If the
value array entries index reference is zero the table does not contain any value array entries.

The record entries contain references to the table value array entries. So if the table contains no
values the value array should be empty.

In some tables the b5 table header index reference contains a references to a b5 table header with an
empty record entries reference. The value array entries index reference in the 7c table header is also
empty.

It is possible for the table to have table header entries but no values array entries. The reverse is
unknown.

11.5.2. The 7c column definition

The remaining data in the 7c table header contains multiple column definitions. The column
definitions describe the format of the data in the values array entries. The 7c column definition
consist of 8 bytes:

offset size value description

0 2 The record entry value type

2 2 The record entry type

4 2 The values array entry offset

6 1 The values array entry size

7 1 The values array entry number
(0 represents the first entry)
Cell existence bitmap index

If the table contains values array entries the values array entry offset contains the offset of the value
in the value array (table) entries.

In case of a value reference the actual value is found by reading the value size number of bytes from
the value array entries at the specified value array entries offset. A value array entries offset of 0
points to the beginning of the value array entries.

11.5.3. The b5 table header entry

The 7c table uses the b5 table header with a record entry identifier size of 4 and a record entry value
size of 2 or 4. The record entries reference refers to the record entries. If the record entries reference
is zero there are no record entries.

page 34

11.5.4. The record entries

The record entries branch

The record entries branch has a record entries level value of 1 (and probably higher). The initial
tables entries level is specified in the b5 table header. A record entry branch consists of 8 bytes:

offset size value description

0 4 The first value in the lower level record
entry array

4 4 The value reference of the lower level
record entry array

The record entry branch contains a reference to lower level record entries.

The record entries leaf

The record entries leaf has a record entries level value of 0. The initial tables entries level is specified
in the b5 table header.

A b5 table header with a record entry identifier size of 4 and a record entry value size of 2 refers to a
record entry consists of 6 bytes:

offset size value description

0 4 The first value in the value array

4 2 Value array number

A b5 table header with a record entry identifier size of 4 and a record entry value size of 4 refers to a
record entry consists of 8 bytes:

offset size value description

0 4 The first value in the value array

4 4 Value array number

11.5.5. The values array entries

The values array entries contain item entries values. The 7c header entries define the format of the
entry/value data within an array entry. The value size and value array entries offset in the 7c header
entries refer to the item value in the value arrays.

The value array consist of multiple values of different sizes.

offset size value description

0 ... The 4 and 8 byte values

... ... The 2 byte values

page 35

offset size value description

... ... The 1 byte values

... ... The cell existence block bitmap
Every bit represent if a value (or column)
exists

For record entry value types that fit into the specified size the record entry value is used directly, i.e.
32-bit, like Integer 32-bit signed (0x0003) or 64-bit, like Filetime (0x0040). Otherwise, the record
entry value is a value reference, which is either a descriptor list identifier, or a table index reference.
If the record entry value is 0 the value is empty. Unlike the bc table the 7c table does store values
smaller than 32-bit in lesser number of bytes.

If a values array reference is an external reference and the values array is stored in a data array there
is additional padding at the end of the last value array in a certain data array block. If the data in the
data array is assumed continuous this causes a misalignment for the value array in the next data array
block. The value array entry identifier in the record entries can be used to realign.

11.6. The 8c table

The 8c table has table values that contain:
• a b5 table header
• record entries that contain identifier to descriptor mappings

11.6.1. The b5 table header entry

The 8c table uses the b5 table header with a record entry identifier size of 8 and a record entry value
size of 4. The record entries reference refers to the record entries. If the record entries reference is
zero there are no record entries.

11.6.2. The record entries

A b5 table header with a record entry identifier size of 16 and a record entry value size of 2 refers to
a specific type of record entry. This type of record entry consists of 18 bytes:

offset size value description

0 8 Identifier
Similar to the value in
PRQ_ID_SECURE4

8 4 Descriptor identifier
with the last 4 bits masked as zero

11.7. The 9c table

The 9c table has table values that contain:
• a b5 table header

page 36

• a 9c table header
• record entries that contain GUID descriptor values

11.7.1. The 9c table header

The ac table header consists of 4 bytes:

offset size value description

0 4 b5 table header index reference

11.7.2. The b5 table header entry

The 9c table uses the b5 table header with a record entry identifier size of 16 and a record entry
value size of 4. The record entries reference refers to the record entries. If the record entries
reference is zero there are no record entries.

11.7.3. The record entries

A b5 table header with a record entry identifier size of 16 and a record entry value size of 4 refers to
a specific type of record entry. This type of record entry consists of 20 bytes:

offset size value description

0 16 A GUID

16 4 A descriptor identifier

11.8. The a5 table

The a5 table has table values that contain:
• record entries that contain record entry values

The a5 table is used by the ac column definitions as an array of record entry values.

The internal table value reference for the a5 table is 0.

If the a5 table is empty it signifies NULL values;

11.9. The ac table

The ac table has table values that contain:
• a b5 table header
• a ac table header
• ac column definitions that contain the item type information

• a5 tables containing the actual record entry values
• record entries that contain the value array information
• value array (table) entries that contain the item value information

page 37

11.9.1. The ac table header

The ac table header consists of 40 bytes:

offset size value description

0 1 \xac Table header type

1 1 Empty value

2 2 values array entry end offset 32-bit values
End offset of the 4 or 8 byte values

4 2 values array entry end offset 16-bit values
End offset of the 2 byte values

6 2 values array entry end offset 8-bit values
End offset of the 1 byte values

8 2 values array entry end offset cell existence
block
(The values array entry size)

10 4 B5 table header index reference

14 4 Values array entry reference

18 4 Empty value

22 2 Number of column definitions

24 4 column definitions reference

28 8 Empty value

36 4 Unknown value (Weak CRC?)

11.9.2. The ac column definition

The column definitions reference refers to the ac column definitions. The column definitions describe
the format of the data in the values array entries. The ac column definition consist of 16 bytes:

offset size value description

0 2 The record entry value type

2 2 The record entry type

4 2 The values array entry offset

6 2 The values array entry size

8 2 The values array entry number
(0 represents the first entry)

10 2 Empty value

12 4 The descriptor identifier of the record
entry values table (a5 table)

If the table contains values array entries the values array entry offset contains the offset of the value
in the value array (table) entries.

page 38

In case of a value reference the actual value is found by reading the value size number of bytes from
the value array entries at the specified value array entries offset. A value array entries offset of 0
points to the beginning of the value array entries.

11.9.3. The b5 table header entry

The ac table uses the b5 table header with a record entry identifier size of 4 and a record entry value
size of 4. The record entries reference refers to the record entries. If the record entries reference is
zero there are no record entries.

It might be that the 4 + 2 variant like for the 7c table is also possible for the ac table.

11.9.4. The record entries

The record entries branch

The record entries branch has a record entries level value of 1 (and probably higher). The initial
tables entries level is specified in the b5 table header. A record entry branch consists of 8 bytes:

offset size value description

0 4 The first value in the lower level record
entry array

4 4 The value reference of the lower level
record entry array

The record entry branch contains a reference to lower level record entries.

The record entries leaf

The record entries leaf has a record entries level value of 0. The initial tables entries level is specified
in the b5 table header.

A b5 table header with a record entry identifier size of 4 and a record entry value size of 4 refers to a
specific type of record entry. This type of record entry consists of 8 bytes:

offset size value description

0 4 The first value in the value array

4 4 Value array number

11.9.5. The values array entries

The values array entries contain item entries values. The ac header entries define the format of the
entry/value data within an array entry. The value size and value array entries offset in the ac header
entries refer to the item value in the value arrays.

The value array consist of multiple values of different sizes.

page 39

offset size value description

0 ... The 4 and 8 byte values

... ... The 2 byte values

... ... The 1 byte values

... ... The cell existence block bitmap
Every bit represent if a value (or column)
exists

For record entry value types that fit into the specified size the record entry value is used directly, i.e.
32-bit, like Integer 32-bit signed (0x0003) or 64-bit, like Filetime (0x0040). Otherwise, the record
entry value is a value reference, which is either a descriptor list identifier, or a table index reference.
If the record entry value is 0 the value is empty. Unlike the bc table the ac table does store values
smaller than 32-bit in lesser number of bytes.

Some column definitions have a descriptor identifier of the record entry values table. This descriptor
identifier refers to an a5 table which contains an array of record entry values. In this case the value in
the values array actually contains an item index of the a5 table.

If a values array reference is an external reference and the values array is stored in a data array there
is additional padding at the end of the last value array in a certain data array block. If the data in the
data array is assumed continuous this causes a misalignment for the value array in the next data array
block. The value array entry identifier in the record entries can be used to realign.

11.10. The bc table

The bc table has table values that contain:
• a b5 table header
• record entries that contain the item type/value information
• record entry value data

11.10.1. The b5 table header entry

The bc table uses the b5 table header with a record entry identifier size of 2 and a record entry value
size of 6. The record entries reference refers to the record entries. If the record entries reference is
zero there are no record entries.

11.10.2. The record entries

The record entries branch

The record entries branch has a record entries level value of 1 (and probably higher). The initial
tables entries level is specified in the b5 table header. A record entry branch consists of 6 bytes:

offset size value description

0 2 The first value in the lower level record
entry array

page 40

offset size value description

2 4 The value reference of the lower level
record entry array

The record entry branch contains a reference to lower level record entries.

The record entries leaf

The record entries leaf has a record entries level value of 0. The initial tables entries level is specified
in the b5 table header.

The record entries in the bc table contain item entries. This type of record entry consists of 8 bytes:

offset size value description

0 2 The record entry type

2 2 The record entry value type

4 4 The record entry value or value reference

For record entry value types that fit into 32-bit, like Integer 16-bit signed (0x0002), Integer 32-bit
signed (0x0003), Boolean (0x000b), the record entry value is used directly. Otherwise, the record
entry value is a value reference, which is either a descriptor list identifier, or a table index reference.
If the record entry value is 0 the value is empty.

11.11. The cc table

According to [MS-PST] there should be a cc table, however it is undocumented and has not yet been
spotted in the wild.

11.12. The item and item value types

The item and item value types are defined in the MAPI definitions document.

The item types are also referred to as the MAPI Property Names/Identifiers (PR_) or columns by
scanpst. The item value types are also referred to as the MAPI Property (Data) Types (PT).

12. The PFF items
The PFF items are stored in record entries. Different tables make up different PFF items.

12.1. Internal nodes

Several of the PFF items have a predefined node identifier.

Value Identifier Description

33 (0x21) NID_MESSAGE_ The message store

page 41

Value Identifier Description

STORE Consists of a bc table

97 (0x61) NID_NAME_TO_
ID_MAP

The name-to-id-map
Consists of a bc table

161 (0xa1) NID_NORMAL_F
OLDER_TEMPLA
TE

The folder template

193 (0xc1) NID_SEARCH_F
OLDER_TEMPLA
TE

The search folder template

290 (0x122) NID_ROOT_FOL
DER

The root folder
Consists of a bc table
Note that this actually is a folder node type (0x02)

481 (0x1e1) NID_SEARCH_M
ANAGEMENT_Q
UEUE

Pending search-related update queue
Consists of an empty descriptor

513 (0x201) NID_SEARCH_A
CTIVITY_LIST

Active searches list
Consists of a list of some kind

577 (0x241) NID_RESERVED
1

Unknown
Reserved

609 (0x261) NID_SEARCH_D
OMAIN_OBJECT

Search criteria list
Consists of a list of some kind

641 (0x281) NID_SEARCH_G
ATHERER_QUE
UE

Search gatherer queue
Consists of an empty descriptor

673 (0x2a1) NID_SEARCH_G
ATHERER_DESC
RIPTOR

Search gatherer descriptor
Consists of (yet) unknown data

737 (0x2e1) NID_RESERVED
2

Unknown
Reserved

769 (0x301) NID_RESERVED
3

Unknown
Reserved

801 (0x321) NID_SEARCH_G
ATHERER_FOLD
ER_QUEUE

Search gatherer folder queue
Consists of an empty descriptor

2049 (0x801) Unknown (found in OST)
Consists of a 6c table

2081 (0x821) Unknown (found in OST)
Consists of a 8c table

2113 (0x841) Unknown (found in OST)
Consists of a 7c table

3073 (0xc01) Unknown (found in PST, OST)

page 42

Value Identifier Description

Consists of a 9c table

12.2. The message store

The descriptor index identifier 33 (0x21) refers to the message store.

The message store is a bc table which can contain:
• The display name: “Personal Folders”
• Valid folder mask
• Password checksum

The message store contains several entry identifiers of Outlook special folders. These are:
Folder Entry identifier property

Outbox folder PidTagIpmOutboxEntryId
(PR_IPM_OUTBOX_ENTRYID)

Deleted Items folder PidTagIpmWastebasketEntryId
(PR_IPM_WASTEBASKET_ENTRYID)

Sent Items folder PidTagIpmSentMailEntryId
(PR_IPM_SENTMAIL_ENTRYID)

IPM root folder PidTagIpmSubtreeEntryId
(PR_IPM_SUBTREE_ENTRYID)

Search-results root folder PidTagFinderEntryId
(PR_FINDER_ENTRYID)

Common views root folder PidTagCommonViewsEntryId
(PR_COMMON_VIEWS_ENTRYID)

Personal views root folder PidTagViewsEntryId
(PR_VIEWS_ENTRYID)

Contacts root folder PidTagIpmContactEntryId
(PR_IPM_CONTACT_ENTRYID)

Drafts root folder PidTagIpmDraftsEntryId
(PR_IPM_DRAFTS_ENTRYID)

Journal root folder PidTagIpmJournalEntryId
(PR_IPM_JOURNAL_ENTRYID)

Calendar root folder PidTagIpmAppointmentEntryId
(PR_IPM_APPOINTMENT_ENTRYID)

Notes root folder PidTagIpmNoteEntryId
(PR_IPM_NOTE_ENTRYID)

Tasks root folder PidTagIpmTaskEntryId
(PR_IPM_TASK_ENTRYID)

Note that some PFF files do not contain a message store.

page 43

12.3. The name-to-id map

The descriptor index identifier 97 (0x61) refers to the the name-to-id map.

The name-to-id map is a bc table which contains the following entries:
• 0x0001 (Name-to-ID Map Number of Validation Entries)
• 0x0002 (Name-to-ID Map Class identifiers)
• 0x0003 (Name-to-ID Map Entries)
• 0x0004 (Name-to-ID Map Strings)
• 0x1000 and up (Name-to-ID Map Validation Entries)

The entry 0x0002 (Name-to-ID Map Class Identifiers) is of type 0x0102 (Binary data) and contains
an array of class identifiers (CLSID).

The entry 0x0003 (Name-to-ID Map Entries) is of type 0x0102 (Binary data) and contains an array
of name-to-id map entries. An name-to-id map entry consist of 8 bytes.

offset size value description

0 4 The name-to-id map entry value or value
reference

4 2 The name-to-id map entry type

6 2 The name-to-id map entry number

The lowest bit in the name-to-id map entry type signifies where to find the name-to-id map value.
• If set it contains an offset into the 0x0004 (Name-to-ID Map Strings) array. This type

corresponds to MAPI MNID_STRING ;
• If not set it contains the entry type to which the name-to-id is mapped. This type corresponds to

MAPI MNID_ID .

Type Identifier Description

0x0000
0x0001

NAMEID_GUID_
NONE

No class

0x0002
0x0003

NAMEID_GUID_
MAPI

The name-to-id map entry type refers to the class MAPI
(PS_MAPI 00020328-0000-0000-c000-000000000046)

0x0004
0x0005

NAMEID_GUID_
PUBLIC_STRING
S

The name-to-id map entry type refers to the class Public stings
(PS_PUBLIC_STRINGS: 00020329-0000-0000-c000-
000000000046)

The remaining name-to-id map entry type value refers to a value in the class identifier array:
index number = (type / 2) - 3

E.g. the value 0x0006 or 0x0007 refer to the first entry (entry: 0) in the class identifier array.

The correspondent item type is the name-to-id map number + 0x8000.

The entry 0x0004 (Name-to-ID Map Strings) is of type 0x0102 (Binary data) and contains an array
of strings. An individual string consists of:

page 44

offset size value description

0 4 The number of bytes in the string

4 ... The string in ASCII or Unicode without
the end of string character (NUL-
character)

Note that the Name-to-ID Map Strings can be empty.

Most of the time the Name-to-ID Map Strings are in Unicode (UTF-16) however sometimes the
string consists of an ASCII string containing. Until now only ASCII strings containing a MAPI
property identifier string (PR_) have been found. In particular in relation with a BlackBerry RIM
server properties (PR_RIM_). Note that the last byte in such ASCII strings can be a 0 byte. Could
this be a mnemonic way of mapping MAPI identifiers?

The entries s0x1000 and up (Name-to-ID Map Validation Entries) contain values similar to those in
the entry 0x0003 (Name-to-ID Map Entries). Except that these are used for validation.

offset size value description

0 4 The name-to-id map entry validation
value

4 2 The name-to-id map entry type

6 2 The name-to-id map entry number

The lowest bit in the name-to-id map entry type signifies where to find the name-to-id map validation
value.
• If set it contains a weak CRC32 of the string in the 0x0004 (Name-to-ID Map Strings) array;
• If not set it contains a duplicate of the value in the 0x0003 (Name-to-ID Map Entries).

Note that some PFF files do not contain a name-to-id map.

12.4. The root folder and folder items

The descriptor index identifier 290 (0x112) refers to the the root folder item.

The descriptor index entry of the root item refers to itself as its parent.

The child items can be found by the parent descriptor identifier in the descriptor index entry. The
descriptor index entries that are not part of the item hierarchy should not contain parent identifiers
(parent identifies of 0).

The folder item can contain:
• Display Name
• Number of content items
• Number of unread content items
• Has sub folders
• Associate content count

The number of content items in a folder is made up from the item count and associated item count.

page 45

12.4.1. Inbox special folders

The Inbox folder contains several entry identifiers of Outlook special folders. These are:
Folder Entry identifier property

Calendar PidTagIpmAppointmentEntryId
(PR_IPM_APPOINTMENT_ENTRYID)

Contacts PidTagIpmContactEntryId
(PR_IPM_CONTACT_ENTRYID)

Journal PidTagIpmJournalEntryId
(PR_IPM_JOURNAL_ENTRYID)

Notes PidTagIpmNoteEntryId
(PR_IPM_NOTE_ENTRYID)

Tasks PidTagIpmTaskEntryId
(PR_IPM_TASK_ENTRYID)

Drafts PidTagIpmDraftsEntryId
(PR_IPM_DRAFTS_ENTRYID)

Outbox special folders?

12.4.2. The related sub folders item

A folder descriptor index identifier + 11 (0x000b) refers to the related sub folders item, e.g. for the
root folder this is 290 + 11 = 301. The related sub folders item consists of a 7c table.

The sub folders item can be used to determine which items in the folder are sub folders. The row
identifier (PidTagLtpRowNid) value of each set contains the identifier of the sub folder item.

12.4.3. The related sub messages item

A folder descriptor index identifier + 12 (0x000c) refers to the related sub messages item, e.g. for the
root folder this is 290 + 12 = 302. The related sub messages item consists of a 7c table.

The sub messages item can be used to determine which items in the folder are messages. The row
identifier (PidTagLtpRowNid) value of each set contains the identifier of the sub message item.

12.4.4. The related sub associated contents item

A folder descriptor index identifier + 13 (0x000d refers to the related sub associated contents item,
e.g. for the root folder this is 290 + 13 = 303. The related sub associated contents item consists of a
7c table.

The sub associated contents item can be used to determine which items in the folder are associated
contents. The row identifier (PidTagLtpRowNid) value of each set contains the identifier of the sub
associated contents item.

page 46

12.4.5. Note

Special purpose folder descriptor index identifier + 3 => empty descriptor
Special purpose folder descriptor index identifier + 4 => bc table

A folder descriptor index identifier + 18 => 8c table (Inbox, Drafts, Sync Issues, Renamed By MAE)
Contains an number of elements similar to the number of messages in the corresponding folder.

A folder descriptor index identifier + 19 => 8c table (CommonViews, Inbox, Calendar)

Calender folder descriptor index identifier + 23 => 7c table

12.4.6. Unknown 1718 sub item

When a folder contains X the local descriptors contains an entry 1718 (0x06b6). This local
descriptor refers to a 7c table which contains the Y item.

The Y contains multiple sets (1 per Z). It can contain the:

(Used by: CommonViews, OutlookReminder, To-Do Search, Tracked Mail Processing, Shortcuts,
Views, IPM SUBTREE, Deleted Items, Inbox, Sent Items, Calendar, Contacts, Drafts, Journal, Junk
E-mail, Notes, RSS Feeds, Conflicts,)

Perhaps a Folder View or sort sub item?

0x67f2 (: Row identifier)
points to an entry type within the parent table

12.4.7. Note

Possible other sub items

1751

1784

12.5. The message item

The message item is a generic variant of other items, like e-mail, contact, appointment, etc.
The message item at least has:
• a message class containing: 'IPM'

Certain types of message items also can have the sub items:
• attachments
• recipients

Value Identifier Description

1682
(0x0692)

NID_TYPE_RECI
PIENT_TABLE

Recipients item
Consists of a 7c table

page 47

Value Identifier Description

1649
(0x0671)

NID_TYPE_ATT
ACHMNET_TAB
LE

Attachments item
Consists of a 7c table

NID_TYPE_ATT
ACHMNET

Attachment item
Consists of a bc table

NID_TYPE_LTP Table value reference
Consists of raw data

12.5.1. The attachments sub item

When an item contains attachments the local descriptors contains an entry 1649 (0x0671). This local
descriptor refers to a 7c table which contains the attachments item.

The attachments item table contains multiple sets (1 per attachment). It can contain the attachments:
• size
• filename
• attachment method
• attachment item local descriptor

The local descriptor identifier refers to an entry in the local descriptors of the corresponding item.
The list identifier of the local descriptor entry refers to the local descriptors of the attachment item.

The attachment sub item

The attachment can contain the attachments:
• size
• creation time
• modification time
• data object
• filename
• attachment method
• mime type
• rendering position

The Attachment data object (0x3701) can be of type Binary Data (0x0102) and Embedded Object
(0x000d). The Embedded Object is used for bounced e-mails in which it contains an embedded PFF
table. The Embedded Object can also contain other data like an OLE2 document.

Attachment method (0x3705)
value

Attachment data object
(0x3701) entry type

Attachment type

0x00000000 Unknown Unknown

0x00000001 Binary Data (0x0102) (Attached) Data
(Separately attached data)

0x00000002 (Attachment is stored
externally)

Reference

page 48

Attachment method (0x3705)
value

Attachment data object
(0x3701) entry type

Attachment type

0x00000003 Unknown Unknown

0x00000004 Unknown Unknown

0x00000005 Embedded Object (0x000d) (Attached) Item
(Embedded PFF item)

0x00000006 Embedded Object (0x000d) (Attached) Data or item
(Embedded OLE2 document)

Found empty attachment data object (0x3701) value but attachment has size 206. But contains entry
0x0e27 with binary data of size 100.

Found attachment with attachment method (0x3705) 0x0001 (ATTACH_BY_VALUE) without an
attachment data object (0x3701) entry. Attachment has size 54, however Outlook shows base64
encoded data of a larger size.
Parent e-mail contains 'partial message' entries. This seems to be a split MIME RFC message, where
the data is stored in the message body of the attached e-mails.
Outlook cannot access the attachment of the attached e-mails.

12.5.2. The recipients sub item

When a folder contains attachments the local descriptors contains an entry 1682 (0x0692). This local
descriptor refers to a 7c table which contains the recipients items.

The recipients item contains multiple sets (1 per recipient). It can contain the recipient:
• type
• e-mail address
• search key
• messaging username

12.5.3. Note

Possible other sub items

1612

12.6. The appointment item

The appointment item can contain the values:
• message class: 'IPM.Appointment'

The appointment item also can have the sub items:
• attachments
• recipients

page 49

12.7. The contact item

The contact item can contain the values:
• message class: 'IPM.Contact'

12.8. The distribution list item

The distribution list item is also known as contact group item can contain the values:
• message class: 'IPM.DistList'
• 0x8054 (PidLidDistributionListOneOffMembers)
• 0x8055 (PidLidDistributionListMembers)

12.9. The e-mail item

The e-mail item can contain the values:
• message class: 'IPM.Note'
• transport headers
• plain text message body
• compressed RTF message body
• HTML message body

The e-mail item also can have the sub items:
• attachments
• recipients

12.10. The sticky note item

The task item can contain the values:
• message class: 'IPM.StickyNote'

12.11. The task item

The task item can contain the values:
• message class: 'IPM.Task'

12.12. The message manager (associated) item

The message manager (associated) item can contain the values:
• message class: 'IPM.MessageManager'

12.13. The migration status (associated) item

The migration status (associated) item can contain the values:
• message class: 'IPM.Microsoft.MigrationStatus'

12.14. The rule organizer (associated) item

The rule organizer (associated) item can contain the values:

page 50

• message class: 'IPM.RuleOrganizer'

12.15. The rule message (associated) item

The rule message (associated) item can contain the values:
• message class: 'IPM.Rule.Message'

12.16. The extended rule message (associated) item

The extended rule message (associated) item can contain the values:
• message class: 'IPM.ExtendedRule.Message'

12.17. The configuration RSS rule (associated) item

The configuration RSS rule (associated) item can contain the values:
• message class: 'IPM.Configuration.RssRule'

13. LZFu compression
The LZFu compression is used for RTF formatted data [ROTHMAN99].

Compressed LZFu data starts with a LZFu header
offset size value description

0 4 Size of the compressed data
including the following 12 bytes of the
header

4 4 Size of the uncompressed data

8 4 Compression signature

12 4 A CRC32 of the compressed data.

The signature 0x75465a4c (“LZFu”) that the data is compressed. The signature 0x414c454d
(“MELA”) that the data is uncompressed.

The CRC32 is similar to the standard CRC32 algorithm which is mentioned in RFC 1952 with a
slight modification: the inversion (or xor with 0xffffffffL) before and after the CRC update is
omitted. This inversion is applied in order to avoid a CRC weakness, which is that any number of
leading or trailing zero bytes can be added or removed without the CRC detecting the change. For
some reason, the compressed RTF CRC32 implementation is the weaker one, without this inversion.
It is calculated on the compressed data bytes (excluding the LZFu header).

The compressed data is directly after the header. It consists of 8-unit chunks. Each chunk begins
with a single flag byte. The bits within the flag byte are read in LSB order. Each bit in the byte flag is
a flag for the corresponding unit in the chunk.
• 0 represent a 1 byte literal which should be copied as-is;
• 1 represent a 2 byte reference.

A 2 byte reference consists of:

page 51

offset size value description

0 1.4 Reference offset into the LZ buffer

1.4 0.4 Reference size

The reference offsets represent offsets into the LZ buffer. The size of the reference offset allows for
4096 possible values, which is the size of the LZ buffer. The LZ buffer wraps around as it is filled
with the decompressed data. The LZ buffer is preloaded with a common RTF header string (found in
RTFLIB32.LIB). The string is represented as a C string of 207 bytes.

{\\rtf1\\ansi\\mac\\deff0\\deftab720{\\fonttbl;}{\\f0\\fnil \\froman
\\fswiss \\fmodern \\fscript \\fdecor MS Sans SerifSymbolArialTimes New
RomanCourier{\\colortbl\\red0\\green0\\blue0\n\r\\par
\\pard\\plain\\f0\\fs20\\b\\i\\u\\tab\\tx

The reference size is a 4 bit value that represents a value between 2 and 17. A reference size of 0
representing 2. Therefore the reference size needs to be corrected by 2.

The uncompressed size does not entail the 2 trailing zero bytes.

14. MacBinary encoding
PST and OST files created by Microsoft Entourage (Outlook for MacOS) seem to use the
MacBinary encoding to store attachment data.

Three MacBinary standards are known:
• version 1 (MacBinary)
• version 2 (MacBinary II)
• version 3 (MacBinary III)

The MacBinary format uses big-endian.

MacBinary data consists of:
offset size value Description

0 128 Header

128 (secondary
header size)

Secondary header
as of MacBinary II
if set this value must be 128 byte aligned
padded with zero values if necessary

... (data fork size) The data fork
if set this value must be 128 byte aligned
padded with zero values if necessary

... (resource fork
size)

The resource fork
if set this value must be 128 byte aligned
padded with zero values if necessary

... (get info size) get info
as of MacBinary II

page 52

14.1. Header

The MacBinary header
offset size value description

As of MacBinary

0 1 0x00 Reserved
For version byte

1 1 Filename length
Minimum of 1
Maximum of 31

2 63 Filename
Unused bytes are zeroed

65 4 The file type

69 4 The file creator

73 1 Finder flags
0x01 => inited
0x02 => changed
0x04 => budy
0x08 => bozo?
0x10 => system
0x20 => bundle
0x40 => invisible
0x80 => locked

74 1 0x00 Empty value

75 2 y coordinate
The file's vertical position in the Finder
window

77 2 x coordinate
The file's horizontal position in the Finder
window

79 2 Folder identifier
The file's Finder window or folder
identifier

81 1 Protected flag
0x01 => ?

82 1 0x00 Empty value

83 4 Data fork size
0 if there is none

87 4 Resource fork size
0 if there is none

91 4 Creation date and time
(Probably a MacOS based timestamp see
HFS)

95 4 Modification date and time
(Probably a MacOS based timestamp see

page 53

offset size value description

HFS)

As of MacBinary II, in previous version these values would be all zeroed

99 2 Get info size
0 if there is none

101 1 Finder flags bits 0-7
Bits 8-15 are defined at offset 73
0x01 => is on desk
0x0e => color (bits 1-3)
0x10 => color reserved
0x20 => requires switch launch
0x40 => is shared
0x80 => has no inits

As of MacBinary III, in previous version these values would be all zeroed

102 4 “mBIN” Signature

106 1 Filename script
(fdscript of fxinfo)

107 1 Extended finder flags
(dfxflags of fxinfo)

108 8 0x00 Unused

As of MacBinary II, in previous version these values would be all zeroed

116 4 Size unpacked

120 2 Secondary header size
0 if there is none

122 1 0x81
0x82

MacBinary II version
MacBinary III version

123 1 0x81 Minimum required MacBinary II (or later)
version

124 2 CRC-16 of the previous 124 bytes
What CRC algorithm?

As of MacBinary

126 2 Reserved
for computer type and OS identifier

15. Remarks
The scenarios described below do not seem to be normal behavior.

15.1. Encrypted PFF with encryption type none

Although encryption type is none some PFF files still contain compressible encrypted data. This was
found in multiple times in PST files created by Microsoft Exchange Mailbox Merge Program
(ExMerge). One of which created by ExMerge v6.5.7529.0.

page 54

One of these PST files also did not contain a message store and name-to-identifier-map.

Neither Outlook (MAPI) or scanpst was able to handle these files. Libpff is handles this scenario
automatically.

In (at least) one of these files the entries of some data arrays all are encrypted except for the last one.
Libpff is able to detect some of these unencrypted data array entries.

15.2. PFF missing root index node and allocation table pages

Encountered a 1.4 GiB PST file created by ExMerge (unknown version) with zero root index node
pages and missing allocation table pages.

Neither Outlook (MAPI) or scanpst was able to handle these files. Libpff is able to handle this
scenario only using recovery.

15.3. PFF with split attached message

Encountered a PST file with an e-mail which has 4 e-mail messages attached.
These 4 e-mail messages contained parts of a single message. The data of the single message was
stored in the message body of the 4 attached e-mails. These 4 attached e-mails claim to have an
attachment themselves, but Outlook is not able to access these attachments; neither do they contain
any data.

Scanpst did not remark this as a problem. Libpff will not recombine the split attached message, and
will tell you it cannot export the attachment of the attached e-mails.

15.4. PFF with extended ASCII strings with Unicode codepage

In a PST file, with invalid encryption type, created by ExMerge v6.5.7529.0,from a ExChange 2003
server with BlackBerry RIM the codepage 1200 was found. Codepage 1200 is not defined by MAPI
but used by Windows to indicate Unicode string. So the PST contains (extended) ASCII strings with
the Unicode-'codepage'.

For now only UTF-8 strings have been found, but in the Extensible Storage Engine (ESE) Database
File (EDB) format codepage 1200 is either used for UTF-8 or UTF-16 little-endian strings.

Libpff as of version 20100429 will handle this scenario automatically.

15.5. PFF with Unicode string which contains 16-bit extended ASCII
string

In a Unicode PST file, probably copied from an extended ASCII PST file, some messages contain
values which are stored as Unicode strings but actually contains an extended ASCII string stored as
16-bit characters.

Libpff does not handle this scenario yet.

page 55

16. Notes
TODO add info about the free map and free page map (header)

16.1. Root items

16.1.1. PST
33 message store
97 name-to-id map

290 root folder
301 sub folders (7c table)
302 sub messages (7c table)
303 sub associated items (7c table)

481 empty descriptor
513 Active searches list (see below)
609 Search criteria list (see below)
641 Search gatherer queue (empty descriptor)
673 Search gatherer descriptor (see below)
801 empty descriptor
1549 empty 7c table (template of some kind?)
1550 empty 7c table (template of some kind?)
1551 empty 7c table (template of some kind?)
1552 empty 7c table (template of some kind?)
1579 7c table

1612 empty 7c table (template?)
1649 empty 7c table (also used by attachments sub item) (template?)
1682 empty 7c table (also used by recipients sub item) (template?)
1718 empty 7c table (also used by unknowns sub item) (template?)
1751 empty 7c table (template?)
1784 7c table (template?)

1840 emails/items table (ac table)
3073 guid lookup table (9c table)

> 8194 related folder items

8742 empty descriptor (Search update queue)
8743 bc table (Search update queue)
8752 empty 7c table (Search contents table)

> 32813 other kind of folders ?

32813 7c table (Sub folders)
32814 empty 7c table (Sub messages)
32815 empty 7c table (Sub associated contents)

32845 7c table (Sub folders)
32846 empty 7c table (Sub messages)
32847 empty 7c table (Sub associated contents)

32877 empty 7c table (Sub folders)
32878 empty 7c table (Sub messages)
32879 empty 7c table (Sub associated contents)

page 56

32909 empty 7c table
32910 emails/items table (7c table)
32911 empty 7c table

> 524326 special folders ?

524326 empty descriptor (Search update queue)
524327 bc table (Search update queue)
524336 empty 7c table (Search contents table)

> 1048648 messages ?

Active searches list (513)
00000000: 23 22 00 00 23 00 08 00 43 00 08 00 63 00 08 00 #"..#... C...c...
00000010: 83 00 08 00

00000000: 23 22 00 00 23 00 08 00 43 00 08 00 63 00 08 00 #"..#... C...c...
00000010: 83 00 08 00

List of descriptors?

Search criteria list (609)
00000000: 43 21 00 00 63 21 00 00 83 21 00 00 a3 21 00 00 C!..c!.. .!...!..
00000010: c3 21 00 00 23 80 00 00 43 80 00 00 63 80 00 00 .!..#... C...c...
00000020: 83 80 00 00 a3 80 00 00 c3 80 00 00 e3 80 00 00
00000030: 03 81 00 00 23 81 00 00 43 81 00 00 63 81 00 00 #... C...c...
00000040: 83 81 00 00 a3 81 00 00

00000000: 43 21 00 00 63 21 00 00 83 21 00 00 a3 21 00 00 C!..c!.. .!...!..
00000010: c3 21 00 00 23 80 00 00 43 80 00 00 63 80 00 00 .!..#... C...c...
00000020: 83 80 00 00 a3 80 00 00 c3 80 00 00 e3 80 00 00
00000030: 03 81 00 00 23 81 00 00 43 81 00 00 63 81 00 00 #... C...c...
00000040: 83 81 00 00 a3 81 00 00

List of descriptors?

Search gatherer descriptor (673)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010: 01 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00
00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000050: 00 00 00 00 00 00 00 00

00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010: 01 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00
00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

page 57

00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000050: 00 00 00 00 00 00 00 00

16.1.2. OST
33 message store
97 name-to-id map

290 root folder
301 sub folders (7c table)
302 sub messages (7c table)
303 sub associated items (7c table)

481 empty descriptor
513 (unknown)
609 (unknown)
641 empty descriptor
673 (unknown)
801 empty descriptor

template tables or used to store empty tables for the specific purpose only
once?
1549 empty 7c table (folder related template?)
1550 empty 7c table (message related template?)
1551 empty 7c table (message related template?)
1552 empty 7c table (message related template?)
1556 empty 8c table
1561 empty 7c table (identifier related template?)
1579 7c table with report data (contains IPC, IPM, REPORT.IPM)

1612 empty 7c table (Submit related template?)
1649 empty 7c table (attachments related template?) (attachments sub item)
1682 empty 7c table (recipients related template?) (recipients sub item)
1718 empty 7c table (identifier related template?) (unknowns sub item)
1751 empty 7c table (identifier related template?)
1784 empty 7c table (identifier related template?)

2049 6c table (contains GUID that map to other GUIDs?)
2081 8c table (folder identifier related table? 0x67f4 value related)
2113 7c table (folder identifier releated table? 0x36de value related)
3073 empty 9c table

> 8194 related folder items

8194 folder (no root item)

8205 sub folders
8206 sub messages
8207 sub associated items
8212 empty 8c table
8213 empty 8c table

...

8739 SPAM search folder 2 (Outlook.ItemProcessor) (no root item)

8742 empty descriptor (8739+3)
8743 bc table (contains a single entry 0x660b 0x0003) (8739+4)

page 58

8752 sub associated items (empty 7c table)

...

> 32813 other kind of folders ?

32802 Calendar (no root item)

32813 sub folders
32814 sub messages
32815 sub associated items
32820 empty 8c table
32821 empty 8c table

32825 empty 7c table (32802+23)

...

> 524326 special folders ?

524323 Reminder folder (Outlook.Reminder) (no root item)

524326 empty descriptor
524327 bc table
524336 empty 7c table

524355 To-do search folder (IPF.Task) (no root item)

524358 empty descriptor
524359 bc table (IPM.Appointment)
524368 empty 7c table

524387 ItemProcSearch folder (Outlook.ItemProcessor) (no root item)

524390 empty descriptor
524391 bc table
524400 7c table (messages)

524419 Tracked Mail Processing folder (IPF.Note) (no root item)

524422 empty descriptor
524423 bc table
524432 empty 7c table

> 1048648 messages ?

16.1.3. PAB
33 message store
39 bc table with “MAPIPDL”
41 0x01 0x00 data type
63 7c table with contacts
95 0x02 0x00 data type
255 empty 7c table
287 0x01 0x00 data type
319 bc table

page 59

41 (0x29) libpff_table_read: table:

00000000: 01 00 00 00 00 00 00 00 00 00 00 00 1e 00 01 30 0
00000010: 00 00 00 00

95 (0x5f) libpff_table_read: table:

00000000: 02 00 00 00 00 00 00 00 00 00 00 00 1e 00 00 e3
00000010: 00 00 00 00 02 01 0b 30 00 00 00 00 0

287 (0x11f) libpff_table_read: table:

00000000: 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 e4
00000010: 00 00 00 00

16.2. GUID identifiers

16.2.1. PST

The record key in the message store item (33) is used as GUID in the entry identifiers for the within
the PST file.

0x0ff9 (PidTagRecordKey : Record key)
0x0102 (PT_BINARY : Binary data)

GUID : 4a2f9232-b9d7-4afc-a1d5-9634785b50af

16.2.2. OST

The 0x6615 value in the message store item (33) is used as GUID in the entry identifiers for the
within the OST file.

0x6615 (_UNKNOWN_ : Unknown)
0x0048 (PT_CLSID : GUID (128-bit))

GUID : 1b5d8add-509a-4cb8-af41-8ff3e6375fca

Note that the entryid object identifier data is different than those used in a PST file.

0x36d0 (PidTagIpmAppointmentEntryId : Calendar folder entry identifier)
0x0102 (PT_BINARY : Binary data)

Entry identifier:
Flags : 0x00, 0x00, 0x00, 0x00
Service provider identifier : 77c9cc1c-4915-4c72-bd2f-f28d487b92cc
(Unknown)
Object identifier data:
00000000: 01 00

00000000: 8e 5d f2 3a 78 32 7a 41 ae 4c 2c ce 44 e1 ...].:x2 zA.L,.D.
00000010: 8a 88

page 60

GUID: 3af25d8e-3278-417a-ae4c-2cce44e18a88

00000010: 00 00 00 19 50 c5

First part of the PRQ_ID_SECURE4 value

00000010: 00 00 P. ..

Corresponding item

0x65e2 (PR_CHANGE_KEY : Change key)
0x0102 (PT_BINARY : Binary data)

GUID : af1252d6-dd91-4391-b1fa-ee82341e0c04
Unknown1:
00000000: 00 00 04 12

0x65e3 (PR_PREDECESSOR_CHANGE_LIST : Predecessor change list)
0x0102 (PT_BINARY : Binary data)

Size : 0x16
GUID : 3af25d8e-3278-417a-ae4c-2cce44e18a88
Unknown:
00000000: 00 00 00 19 60 c8 `.

Size : 0x14
GUID : af1252d6-dd91-4391-b1fa-ee82341e0c04
Unknown:
00000000: 00 00 04 12

0x67f4 (PRQ_ID_SECURE4 :)
0x0014 (PT_I8 : Integer 64-bit signed)

integer 64-bit signed : -4228852562310201343 (0xc550190000000001)

6c table

record entry guid : 3af25d8e-3278-417a-ae4c-2cce44e18a88
record entry values array number : 0x0001
record entry value guid : 3af25d8e-3278-417a-ae4c-2cce44e18a88

maps the guid to the last part of the PRQ_ID_SECURE4

8c table

identifier : 0xc550190000000001
descriptor identifier : 0x00008080

maps the PRQ_ID_SECURE4 to a descriptor identifier, requires correction of the
lower four bits

But what is record key used for?

0x0ff9 (PidTagRecordKey : Record key)
0x0102 (PT_BINARY : Binary data)

page 61

GUID : e71f4b30-150f-410d-90f9-1e7d9204d76e

16.3. Note
Server Failures

0x65e2 (PR_CHANGE_KEY : Change key)
0x0102 (PT_BINARY : Binary data)

GUID : 5003c7c4-af96-4aa3-9d5b-e0c1e039d0ef
Unknown1:
00000000: 00 00 00 12 76 38 v8

0x65e3 (PR_PREDECESSOR_CHANGE_LIST : Predecessor change list)
0x0102 (PT_BINARY : Binary data)

Size : 0x16
GUID : 3af25d8e-3278-417a-ae4c-2cce44e18a88
Unknown:
00000000: 00 00 00 3c f4 8e ...<..

Size : 0x16
GUID : 5003c7c4-af96-4aa3-9d5b-e0c1e039d0ef
Unknown:
00000000: 00 00 00 12 76 38 v8

0x67f4 (PRQ_ID_SECURE4 :)
0x0014 (PT_I8 : Integer 64-bit signed)

integer 64-bit signed : 929777818772963329 (0xce73c0000000001)

Inbox

0x65e2 (PR_CHANGE_KEY : Change key)
0x0102 (PT_BINARY : Binary data)

GUID : af1252d6-dd91-4391-b1fa-ee82341e0c04
Unknown1:
00000000: 00 00 04 0f

0x65e3 (PR_PREDECESSOR_CHANGE_LIST : Predecessor change list)
0x0102 (PT_BINARY : Binary data)

Size : 0x16
GUID : 5003c7c4-af96-4aa3-9d5b-e0c1e039d0ef
Unknown:
00000000: 00 00 00 0c 9c d8

Size : 0x14
GUID : af1252d6-dd91-4391-b1fa-ee82341e0c04
Unknown:
00000000: 00 00 04 0f

0x67f4 (PRQ_ID_SECURE4 :)
0x0014 (PT_I8 : Integer 64-bit signed)

integer 64-bit signed : -2209002423085694974 (0xe1580c0000000002)

page 62

0xd89c0c0000000002

Archive Search

0x65e2 (PR_CHANGE_KEY : Change key)
0x0102 (PT_BINARY : Binary data)

GUID : af1252d6-dd91-4391-b1fa-ee82341e0c04
Unknown1:
00000000: 00 00 04 1c

0x65e3 (PR_PREDECESSOR_CHANGE_LIST : Predecessor change list)
0x0102 (PT_BINARY : Binary data)

Size : 0x16
GUID : 5003c7c4-af96-4aa3-9d5b-e0c1e039d0ef
Unknown:
00000000: 00 00 00 0c a4 e4

Size : 0x14
GUID : af1252d6-dd91-4391-b1fa-ee82341e0c04
Unknown:
00000000: 00 00 04 1c

0x67f4 (PRQ_ID_SECURE4 :)
0x0014 (PT_I8 : Integer 64-bit signed)

integer 64-bit signed : -2136944829047767038 (0xe2580c0000000002)

6c table

record entry guid : 5003c7c4-af96-4aa3-9d5b-e0c1e039d0ef
record entry values array number : 0x0002
record entry value guid : 5003c7c4-af96-4aa3-9d5b-e0c1e039d0ef

page 63

Appendix A. References
[SMITH02]
Title: outlook.pst -- format of MS Outlook .pst file
Author(s): David Smith, Joe Nahmias, Brad Hards, Carl Byington
URL: http://hg.file-ten-sg.com/libpst/

[LIBESEDB]
Title: Extensible Storage Engine (ESE) Database File (EDB) format
Author(s): Joachim Metz
URL: http://libesedb.sourceforge.net/

[LIBFMAPI]
Title: Message API (MAPI) definitions
Auhtor: Joachim Metz
URL: http://code.google.com/p/libflibs/downloads/detail?name=MAPI%20definitions.pdf

[MSDN]
Title: Microsoft Developer Network
URL: http://msdn.microsoft.com/

[MS-PST]
Title: [MS-PST] Outlook Personal Folders File Format (.pst) structure specification
URL: http://msdn.microsoft.com/

[MACBINARY]
Title: Macintosh Binary Transfer Format (“MacBinary”) Standard Proposal
Title: Macintosh Binary Transfer Format (“MacBinary II”) Standard Proposal
Title: Macintosh Binary Transfer Format (“MacBinary III”) Standard Proposal

[OPENCHANGE]
Title: Openchange MAPI library
URL: http://www.openchange.org/index.php

[RFC1950]
Title: ZLIB Compressed Data Format Specification
Version: 3.3
Author(s): P. Deutsch, J-L. Gailly
Date: May 1996
URL: http://www.ietf.org/rfc/rfc1950.txt

[RFC1951]
Title: DEFLATE Compressed Data Format Specification
Version: 1.3
Author(s): P. Deutsch
Date: May 1996
URL: http://www.ietf.org/rfc/rfc1951.txt

[ROTHMAN99]
Title: The Compressed RTF Format
Author(s): Amichai Rothman
URL: http://www.freeutils.net/source/jtnef/rtfcompressed.jsp

page 64

Appendix B. GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any

page 65

Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or control the reading or
further copying of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display

page 66

copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has
access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five), unless
they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.
• F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

page 67

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives
permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

page 68

name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's users
beyond what the individual works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

page 69

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License "or any later version" applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation. If the Document specifies that a proxy can decide which future versions
of this License can be used, that proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that
publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor
Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus
published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business in
San Francisco, California, as well as future copyleft versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated in
whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

page 70

	1. Overview
	1.1. Test version

	2. File header
	2.1. The 32-bit header data
	2.2. The 64-bit header data
	2.3. Allocation table validation type
	2.4. Descriptor index high water marks
	2.4.1. Descriptor index high water mark type

	2.5. Encryption type

	3. Pages
	3.1. The 32-bit page
	3.2. The 64-bit page
	3.3. The 64-bit 4k page
	3.4. Page type

	4. The allocation table
	4.1. The 32-bit allocation table
	4.2. The 64-bit allocation table
	4.3. The 64-bit 4k page allocation table
	4.4. Allocation table types

	5. The index b-tree
	5.1. The 32-bit index b-tree node
	5.1.1. The 32-bit index b-tree branch node entry
	5.1.2. The 32-bit (file) offset index entry
	5.1.3. The 32-bit descriptor index b-tree leaf node entry

	5.2. The 64-bit index b-tree node
	5.2.1. The 64-bit index b-tree branch node entry
	5.2.2. The 64-bit (file) offset index entry
	5.2.3. The 64-bit descriptor index b-tree leaf node entry

	5.3. The 64-bit 4k page index b-tree node
	5.4. Index identifier
	5.4.1. Node identifier type

	6. The free map
	6.1. The 32-bit free map
	6.2. The 64-bit free map
	6.3. The 64-bit 4k page free map
	6.4. Free map types
	6.5. Notes

	7. The density list
	7.1. The 32-bit density list
	7.2. The 64-bit density list
	7.3. The 64-bit 4k page density list
	7.4. The density list flags
	7.5. The density list entry

	8. Blocks
	8.1. The 32-bit block
	8.2. The 64-bit block
	8.3. The 64-bit 4k page compressed block
	8.4. Block type

	9. The array
	9.1. The 32-bit array
	9.2. The 64-bit array

	10. The local descriptors
	10.1. The 32-bit local descriptors
	10.1.1. The 32-bit local descriptor branch nodes
	10.1.2. The 32-bit local descriptors leaf node

	10.2. The 64-bit local descriptors
	10.2.1. The 64-bit local descriptor branch nodes
	10.2.2. The 64-bit local descriptors leaf node

	11. The table
	11.1. The table block
	11.1.1. Table block header
	11.1.2. The table type
	11.1.3. The table fill level
	11.1.4. The table block index

	11.2. The table value reference
	11.2.1. Internal table value reference

	11.3. The b5 table header
	11.4. The 6c table
	11.4.1. The 6c table header
	11.4.2. The b5 table header entry
	11.4.3. The record entries

	11.5. The 7c table
	11.5.1. The 7c table header
	11.5.2. The 7c column definition
	11.5.3. The b5 table header entry
	11.5.4. The record entries
	The record entries branch
	The record entries leaf

	11.5.5. The values array entries

	11.6. The 8c table
	11.6.1. The b5 table header entry
	11.6.2. The record entries

	11.7. The 9c table
	11.7.1. The 9c table header
	11.7.2. The b5 table header entry
	11.7.3. The record entries

	11.8. The a5 table
	11.9. The ac table
	11.9.1. The ac table header
	11.9.2. The ac column definition
	11.9.3. The b5 table header entry
	11.9.4. The record entries
	The record entries branch
	The record entries leaf

	11.9.5. The values array entries

	11.10. The bc table
	11.10.1. The b5 table header entry
	11.10.2. The record entries
	The record entries branch
	The record entries leaf

	11.11. The cc table
	11.12. The item and item value types

	12. The PFF items
	12.1. Internal nodes
	12.2. The message store
	12.3. The name-to-id map
	12.4. The root folder and folder items
	12.4.1. Inbox special folders
	12.4.2. The related sub folders item
	12.4.3. The related sub messages item
	12.4.4. The related sub associated contents item
	12.4.5. Note
	12.4.6. Unknown 1718 sub item
	12.4.7. Note

	12.5. The message item
	12.5.1. The attachments sub item
	The attachment sub item

	12.5.2. The recipients sub item
	12.5.3. Note

	12.6. The appointment item
	12.7. The contact item
	12.8. The distribution list item
	12.9. The e-mail item
	12.10. The sticky note item
	12.11. The task item
	12.12. The message manager (associated) item
	12.13. The migration status (associated) item
	12.14. The rule organizer (associated) item
	12.15. The rule message (associated) item
	12.16. The extended rule message (associated) item
	12.17. The configuration RSS rule (associated) item

	13. LZFu compression
	14. MacBinary encoding
	14.1. Header

	15. Remarks
	15.1. Encrypted PFF with encryption type none
	15.2. PFF missing root index node and allocation table pages
	15.3. PFF with split attached message
	15.4. PFF with extended ASCII strings with Unicode codepage
	15.5. PFF with Unicode string which contains 16-bit extended ASCII string

	16. Notes
	16.1. Root items
	16.1.1. PST
	Active searches list (513)
	Search criteria list (609)
	Search gatherer descriptor (673)

	16.1.2. OST
	16.1.3. PAB

	16.2. GUID identifiers
	16.2.1. PST
	16.2.2. OST

	16.3. Note

